-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcw_vrp.py
201 lines (170 loc) · 9.89 KB
/
cw_vrp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
"""Implementation of Clark-Wright to solve VRP
Only constraints apart from distance and time are vehicle capacity.
No split deliveries are allowed."""
from geopy.distance import vincenty
import gmplot
import random
CAPACITY = 13 #Maximum capacity for a vehicle
def CreateDataArray():
#locations is set of points in a 2D plane
geolocations = [(21.178609,72.85326),(21.16576,72.819162),(21.190458,72.818343),(21.196357,72.8381),(21.199291,72.845539),(21.173657,72.801709),(21.169425,72.793288),(21.165652,72.785903)]
#geolocations = [[82, 76], [96, 44], [50, 5], [49, 8], [13, 7], [29, 89]]
nodes = [x for x in xrange(1,len(geolocations))]
#demands[i] represents demand at ith point in the plane.
demands = [0, 9, 2, 6, 9, 7, 2, 3]
data = [nodes,geolocations, demands]
return data
def distance(x1, y1, x2, y2):
# Manhattan distance
dist = abs(x1 - x2) + abs(y1 - y2)
return dist
def VincentyDistance(i,j): #Measures distance between two points on a sphere in km. i and j need to be tuples
distance = vincenty(i,j).km
return distance
class CreateDistanceCallback(object):
"""Create callback to calculate distances between points."""
def __init__(self, geolocations):
"""Initialize distance array."""
size = len(geolocations)
self.distMatrix = {}
for from_node in xrange(0,size):
self.distMatrix[from_node] = {}
for to_node in xrange(from_node+1,size):
x1 = geolocations[from_node]
#y1 = geolocations[from_node][1]
x2 = geolocations[to_node]
#y2 = geolocations[to_node][1]
self.distMatrix[from_node][to_node] = VincentyDistance(x1, x2)
def Distance(self, from_node, to_node):
if from_node <= to_node:
return self.distMatrix[from_node][to_node]
else:
return self.distMatrix[to_node][from_node]
def Savings(self,geolocations):
"""Create sorted savings list and matrix with distance and savings"""
self.savings = [] #List to store savings
size = len(geolocations)
for from_node in xrange(1,size):
for to_node in xrange(from_node+1,size):
save = self.Distance(0,from_node) + self.Distance(0,to_node) - self.Distance(from_node,to_node)
member = (from_node,to_node,save) #(i,j,saving for i to j or j to i)
self.savings.append(member)
self.savings.sort(key=lambda member: member[2],reverse = True)
return self.savings
class CreateDemandCallback(object):
"""Create callback to get demands at each location."""
def __init__(self, demands):
self.demandList = demands
def Demand(self, from_node):
return self.demandList[from_node]
class BuildRoute(CreateDistanceCallback,CreateDemandCallback):
"""Builds routes iteratively"""
def __init__(self,demands,geolocations,nodes):
CreateDemandCallback.__init__(self,demands)
CreateDistanceCallback.__init__(self,geolocations)
self.routes = {} #Maintain set of routes
routeCounter = 0 #Counts number of routes already created
for saving in self.Savings(geolocations):
iNode = saving[0]
jNode = saving[1]
iNodeDemand = int(self.Demand(iNode))
jNodeDemand = int(self.Demand(jNode))
#Temp = current volume filled + demand at i + demand at j
## total = route[marker][0] + int(self.Demand(saving[0])) + int(self.Demand(saving[1]))
## if total > CAPACITY:
## continue
routeOfi = [key for key, value in self.routes.iteritems() if iNode in value] #Searching for i in the existing routes
if routeOfi:
routeOfi = routeOfi[0]
## else:
## routeOfi = None
routeOfj = [key for key, value in self.routes.iteritems() if jNode in value] #Searching for j in the existing routes
##
if routeOfj:
routeOfj = routeOfj[0]
## else:
## routeOfj = None
if iNode in nodes and jNode in nodes: # i and j are not in any route
total = iNodeDemand + jNodeDemand
if total > CAPACITY:
continue
#If total is less than capacity then new route with i and j
self.routes[routeCounter] = [total,iNode,jNode]
routeCounter += 1
nodes.remove(iNode)
nodes.remove(jNode)
elif (iNode not in nodes and jNode in nodes) and (self.routes[routeOfi][0] + jNodeDemand <= CAPACITY): #There is a route with i and no route containing j
if self.routes[routeOfi][1] == iNode:
self.routes[routeOfi].insert(1,jNode)
self.routes[routeOfi][0] = self.routes[routeOfi][0] + jNodeDemand
nodes.remove(jNode)
elif self.routes[routeOfi][-1] == iNode:
self.routes[routeOfi].append(jNode)
self.routes[routeOfi][0] = self.routes[routeOfi][0] + jNodeDemand
nodes.remove(jNode)
elif (iNode in nodes and jNode not in nodes) and (self.routes[routeOfj][0] + iNodeDemand <= CAPACITY): #There is a route with j and no route containing i
if self.routes[routeOfj][1] == jNode:
self.routes[routeOfj].insert(1,iNode)
self.routes[routeOfj][0] = self.routes[routeOfj][0] + iNodeDemand
nodes.remove(iNode)
elif self.routes[routeOfj][-1] == jNode:
self.routes[routeOfj].append(iNode)
self.routes[routeOfj][0] = self.routes[routeOfj][0] + iNodeDemand
nodes.remove(iNode)
elif iNode not in nodes and jNode not in nodes:
if (self.routes[routeOfi][1] == iNode and self.routes[routeOfj][-1] == jNode) and (self.routes[routeOfi][0] + self.routes[routeOfj][0] <= CAPACITY):
total = self.routes[routeOfi][0] + self.routes[routeOfj][0]
discard = self.routes[routeOfj].pop(0)
self.routes[routeOfi].extend(self.routes[routeOfj])
elif (self.routes[routeOfj][1] == jNode and self.routes[routeOfi][-1] == iNode) and (self.routes[routeOfi][0] + self.routes[routeOfj][0] <= CAPACITY):
total = self.routes[routeOfi][0] + self.routes[routeOfj][0]
discard = self.routes[routeOfi].pop(0)
self.routes[routeOfj].extend(self.routes[routeOfi])
nodedup = nodes[:]
for node in nodedup:
self.routes[routeCounter] = [int(self.Demand(node)),node]
nodes.remove(node)
routeCounter += 1
def RoutePlot(self,geolocations):
self.routePlot = {}
for key in self.routes:
self.routePlot[key] = [[],[]]
n = len(self.routes[key])
self.routePlot[key][0].append(geolocations[0][0])
self.routePlot[key][1].append(geolocations[0][1])
for element in xrange(1,n):
self.routePlot[key][0].append(geolocations[self.routes[key][element]][0])
self.routePlot[key][1].append(geolocations[self.routes[key][element]][1])
self.routePlot[key][0].append(geolocations[0][0])
self.routePlot[key][1].append(geolocations[0][1])
return self.routePlot
def MapPlot(table,xDepot,yDepot):
gmap = gmplot.GoogleMapPlotter(xDepot, yDepot, 15)
for key in table:
latitudes = table[key][0]
longitudes = table[key][1]
r = lambda: random.randint(0,255)
a1,a2,a3 = hex(r()),hex(r()),hex(r())
randomColor = '#' + a1[2] + a1[3] + a2[2] + a2[3] + a3[2] + a3[3]
gmap.plot(latitudes, longitudes, randomColor, edge_width=4)
gmap.scatter(latitudes,longitudes,'k',marker = True)
gmap.draw("mymap.html")
def main():
data = CreateDataArray()
nodes = data[0]
geolocations = data[1]
demands = data[2]
DistBetweenLocations = CreateDistanceCallback(geolocations)
#DistCallback = DistBetweenLocations.Distance
#save = DistBetweenLocations.Savings(locations)
DemandsAtLocations = CreateDemandCallback(demands)
#print DistBetweenLocations.Savings(locations)
Routes = BuildRoute(demands,geolocations,nodes)
RoutesPlot = Routes.RoutePlot(geolocations)
MapPlot(RoutesPlot,geolocations[0][0],geolocations[0][1])
DemandCallback = DemandsAtLocations.Demand
print Routes.routes
print RoutesPlot
#save = CreateSavingsCallback(locations)
if __name__ == '__main__':
main()