forked from lpjiang97/dynamic-predictive-coding
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_ista.py
243 lines (196 loc) · 10 KB
/
train_ista.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import argparse
import logging
import os.path as op
import sys
sys.path.insert(0, op.abspath(op.join(op.dirname(__file__), '.')))
import numpy as np
import torch
import torch.optim as optim
from torch.optim.lr_scheduler import ExponentialLR
from tqdm import tqdm
from torch.utils.tensorboard import SummaryWriter
import utils
from evaluation import evaluate
from models.predictive_coding_single import DynPredNet as SingleNet
from models.predictive_coding_ista import DynPredNet
import models.data_loader as data_loader
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', default='data/forest',
help="Directory containing the dataset")
parser.add_argument('--model_dir', default='experiments/base_model',
help="Directory containing params.json")
parser.add_argument('--restore_file', default=None,
help="Optional, name of the file in --model_dir containing weights to reload before \
training") # 'best' or 'train'
def train(model, optimizer, dataloader, params):
"""Train the model on `num_steps` batches
Args:
model: (torch.nn.Module) the neural network
optimizer: (torch.optim) optimizer for parameters of model
loss_fn: a function that takes batch_output and batch_labels and computes the loss for the batch
dataloader: (DataLoader) a torch.utils.data.DataLoader object that fetches training data
metrics: (dict) a dictionary of functions that compute a metric using the output and labels of each batch
params: (Params) hyperparameters
num_steps: (int) number of batches to train on, each of size params.batch_size
"""
# set model to training mode
model.train()
# summary for current training loop and a running average object for loss
summ = []
loss_avg = utils.RunningAverage()
# Use tqdm for progress bar
with tqdm(total=len(dataloader), dynamic_ncols=True) as t:
for i, train_batch in enumerate(dataloader):
# move to GPU if available
if params.cuda:
train_batch = train_batch.cuda(non_blocking=True)
spatial_loss, temp_loss, r2_losses, _, _ = model(train_batch)
# compute loss
loss_dict = {
"spatial_loss": spatial_loss.item(),
"temp_loss": temp_loss.item(),
}
# clear previous gradients, compute gradients of all variables wrt loss
for opt in optimizer: opt.zero_grad()
loss = spatial_loss + temp_loss
loss.backward()
# performs updates using calculated gradients
for opt in optimizer: opt.step()
# normalize
model.normalize()
if i % params.save_summary_steps == 0:
# compute all metrics on this batch
summ.append(loss_dict)
# update the average loss
loss_avg.update(loss.item())
t.set_postfix(loss='{:05.3f}'.format(loss_avg()))
t.update()
# compute mean of all metrics in summary
metrics_mean = {metric: np.mean([x[metric]
for x in summ]) for metric in summ[0]}
metrics_string = " ; ".join("{}: {:05.3f}".format(k, v)
for k, v in metrics_mean.items())
logging.info("- Train metrics: " + metrics_string)
return metrics_mean, r2_losses
def train_and_evaluate(model, train_dataloader, val_dataloader, optimizer, scheduler, params, train_writer, test_writer, model_dir,
restore_file=None, two_level=True):
"""Train the model and evaluate every epoch.
Args:
model: (torch.nn.Module) the neural network
train_dataloader: (DataLoader) a torch.utils.data.DataLoader object that fetches training data
val_dataloader: (DataLoader) a torch.utils.data.DataLoader object that fetches validation data
optimizer: (torch.optim) optimizer for parameters of model
loss_fn: a function that takes batch_output and batch_labels and computes the loss for the batch
metrics: (dict) a dictionary of functions that compute a metric using the output and labels of each batch
params: (Params) hyperparameters
model_dir: (string) directory containing config, weights and log
restore_file: (string) optional- name of file to restore from (without its extension .pth.tar)
"""
# reload weights from restore_file if specified
if restore_file is not None:
restore_path = op.join(args.model_dir, args.restore_file + '.pth.tar')
logging.info("Restoring parameters from {}".format(restore_path))
utils.load_checkpoint(restore_path, model, optimizer)
E = params.num_epochs
best_val_loss = float("inf")
test_losses = np.zeros(E)
for epoch in range(E):
# Run one epoch
logging.info("Epoch {}/{}".format(epoch + 1, params.num_epochs))
# Train model
train_metrics, r2_losses_train = train(model, optimizer, train_dataloader, params)
# Evaluate for one epoch on validation set
test_metrics, r2_losses_test, test_loss = evaluate(model, val_dataloader, params)
test_losses[epoch] = test_loss
# write to tensorboard
train_writer.add_scalar("Total", train_metrics['spatial_loss'] + train_metrics['temp_loss'], epoch)
train_writer.add_scalar("Spatial Loss", train_metrics['spatial_loss'], epoch)
train_writer.add_scalar("Temporal Loss", train_metrics['temp_loss'], epoch)
fig, ax = utils.plot_spatial_rf(model.spatial_decoder.weight.T.data.reshape(model.r_dim, -1).detach().cpu().numpy()[:100])
train_writer.add_figure("RF", fig, epoch)
test_writer.add_scalar("Total", test_metrics['spatial_loss'] + test_metrics['temp_loss'], epoch)
test_writer.add_scalar("Spatial Loss", test_metrics['spatial_loss'], epoch)
test_writer.add_scalar("Temporal Loss", test_metrics['temp_loss'], epoch)
if two_level:
fig = utils.plot_r2_loss(r2_losses_train)
train_writer.add_figure("R2 loss", fig, global_step=epoch)
fig = utils.plot_r2_loss(r2_losses_test)
test_writer.add_figure("R2 loss", fig, global_step=epoch)
val_loss = test_metrics['spatial_loss'] + test_metrics['temp_loss']
is_best = val_loss <= best_val_loss
# Save weights
utils.save_checkpoint({'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optim_dict': [opt.state_dict() for opt in optimizer]},
is_best=is_best,
checkpoint=model_dir)
if epoch % 10 == 9:
utils.save_checkpoint({'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optim_dict': [opt.state_dict() for opt in optimizer]},
is_best=is_best,
checkpoint=model_dir,
filename=f'model_epoch_{epoch+1}.pth.tar')
# If best_eval, best_save_path
if is_best:
logging.info("- Found new best loss")
best_val_loss = val_loss
# Save best val metrics in a json file in the model directory
best_json_path = op.join(model_dir, "metrics_val_best_weights.json")
utils.save_dict_to_json(test_metrics, best_json_path)
# Save latest val metrics in a json file in the model directory
last_json_path = op.join(model_dir, "metrics_val_last_weights.json")
utils.save_dict_to_json(test_metrics, last_json_path)
# adjust learning rate
if epoch < 100:
for sched in scheduler: sched.step()
# save test losses
np.save(op.join(model_dir, 'test_losses.npy'), test_losses)
if __name__ == '__main__':
# Load the parameters from json file
args = parser.parse_args()
fpath = args.model_dir
json_path = op.join(fpath, 'params.json')
assert op.isfile(
json_path), "No json configuration file found at {}".format(json_path)
params = utils.Params(json_path)
# use GPU if available
params.cuda = torch.cuda.is_available()
# Set the random seed for reproducible experiments
utils.set_seed(params.seed)
# create writer
train_writer = SummaryWriter(log_dir=op.join(fpath, 'tensorboard', 'train'))
test_writer = SummaryWriter(log_dir=op.join(fpath, 'tensorboard', 'test'))
# Set the logger
utils.set_logger(op.join(fpath, 'train.log'))
# Create the input data pipeline
logging.info("Loading the datasets...")
# fetch dataloaders
params.shuffle = True
dataloaders = data_loader.fetch_dataloader(
['train', 'test'], args.data_dir, params)
train_dl = dataloaders['train']
val_dl = dataloaders['test']
logging.info("- done.")
device = torch.device("cuda:0" if params.cuda else "cpu")
# Define the model and optimizer
two_level = params.model == "two"
if two_level:
model = DynPredNet(params, device).to(device)
optimizer = [
optim.SGD(model.spatial_decoder.parameters(), params.learning_rate_s),
optim.Adam([model.temporal], params.learning_rate_t),
optim.Adam(model.hypernet.parameters(), params.learning_rate_t)
]
else:
model = SingleNet(params, device).to(device)
optimizer = [
optim.SGD(model.spatial_decoder.parameters(), params.learning_rate_s),
optim.Adam(model.temporal.parameters(), params.learning_rate_t),
]
scheduler = [ExponentialLR(optimizer[0], gamma=params.learning_rate_gamma)] + \
[ExponentialLR(opt, gamma=params.learning_rate_gamma-0.03) for opt in optimizer[1:]]
# Train the model
logging.info("Starting training for {} epoch(s)".format(params.num_epochs))
train_and_evaluate(model, train_dl, val_dl, optimizer, scheduler, params, train_writer,
test_writer, args.model_dir, args.restore_file, two_level=two_level)