-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpruning_kernel.cu
320 lines (246 loc) · 8.86 KB
/
pruning_kernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
#ifndef __CUDACC__
#define __CUDACC__
#endif
#define MALLOC_CHECK_ 2
#include <stdio.h>
#include <limits.h>
#include "pruning.h"
/*
Alpha-Beta pruning for the game Reversi/Othello.
Simulation program, not designed to run a full game.
*/
__device__
int directions[9][2] = {{-1,-1}, {-1, 0}, {-1, 1},
{ 0,-1}, { 0, 0}, { 0, 1},
{ 1,-1}, { 1, 0}, { 1, 1}};
__device__ int *galpha, *gbeta;
// From cuda zero-sum games presentation
__device__
void resolve(int *alpha, int *beta) {
if (*alpha <= *galpha) *alpha = *galpha;
else atomicMax(galpha, *alpha);
if (*beta >= *gbeta) *beta = *gbeta;
else atomicMin(gbeta, *beta);
}
// Check if direction results in valid placement
__device__
bool check_valid(board_t *board, state_t state, int dir, int x, int y) {
int cur_x = x + directions[dir][0];
int cur_y = y + directions[dir][1];
while (BOUND(board->dim_x, cur_x) && BOUND(board->dim_y, cur_y)) {
state_t cur_state = board->states[cur_x * board->dim_y + cur_y];
if (cur_state == EMPTY) {
return true;
}
if (cur_state == state) {
return false;
}
cur_x += directions[dir][0];
cur_y += directions[dir][1];
}
return false;
}
// Check if [x,y] is a valid new move
__device__
void valid_move(board_t *board, state_t state, int x, int y) {
state_t cur_state = board->states[x * board->dim_y + y];
if (cur_state != EMPTY) {
return;
}
// for (int i = MAX(x - 1, 0); i <= MIN(x + 1, board->dim_x); i++) {
// for (int j = MAX(y - 1, 0); j <= MIN(y + 1, board->dim_y); j++) {
// if (i == j) continue;
// state_t new_state = board->states[i * board->dim_y + j];
// if (new_state != EMPTY && new_state != state) {
// int dir = (i + 1) * 3 + (j + 1);
// if (check_valid(board, state, dir, i, j)) {
// board->states[x * board->dim_y + y] = VALID;
// }
// }
// }
// }
for (int k = 0; k < 9; k++) {
if (k == 4) continue;
int i = x + directions[k][0];
int j = y + directions[k][1];
if (!BOUND(board->dim_x, i) || !BOUND(board->dim_y, j)) {
continue;
}
state_t new_state = board->states[i * board->dim_y + j];
if (new_state != EMPTY && new_state != state) {
if (check_valid(board, state, k, i, j)) {
board->states[x * board->dim_y + y] = VALID;
}
}
}
}
// Check how much position [x,y] contributes to heuristic
// Simplistic for project to avoid divergent behavior; more powerful ones available.
__device__
int local_eval(board_t *board, state_t state, int x, int y) {
if (state == board->states[x * board->dim_y + y]) {
return 1;
}
return 0;
}
// Orchestrate prefix-sum (reduce) for final evalution value
__device__
int eval_function(board_t *board, state_t state, int x, int y, int *shared) {
unsigned int tid = threadIdx.x * blockDim.x + threadIdx.y;
shared[tid] = local_eval(board, state, x, y);
__syncthreads();
for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
if (tid < s) {
shared[tid] += shared[tid + s];
}
__syncthreads();
}
if (tid == 0) {
return shared[0];
}
}
// Fail-soft alpha-beta pruning adapted from wikipedia
__device__
int node_traverse(board_t *board, int depth, int alpha, int beta, state_t state, int *sdata) {
int x = threadIdx.x, y = threadIdx.y, value = 0, count = 0;
if (depth == 0) {
return eval_function(board, state, x, y, (int *) sdata);
}
// Mark valid moves
valid_move(board, state, x, y);
__syncthreads();
if (state == BLACK) {
value = INT_MIN;
// Iterate through all moves
count = 0;
for (int i = 0; i < board->dim_x; i++) {
for (int j = 0; j < board->dim_y; j++) {
if (count >= MAX_MOVES) {
goto end;
}
if (board->states[i] != VALID) continue;
if (x == i && y == j) {
board->states[i] = state;
}
// Maximize score!
value = MAX(value, node_traverse(board, depth - 1, alpha, beta, WHITE, sdata));
if (value > beta) {
goto end; // β cutoff
}
if (threadIdx.x == 0 && threadIdx.y == 0) {
alpha = MAX(alpha, value);
resolve(&alpha, &beta);
}
// Reverse move
if (x == i && y == j) {
board->states[i] = state;
}
count += 1;
}
}
} else if (state == WHITE) {
value = INT_MAX;
// Iterate through all moves
count = 0;
for (int i = 0; i < board->dim_x; i++) {
for (int j = 0; j < board->dim_y; j++) {
if (count >= MAX_MOVES) {
goto end;
}
if (board->states[i] != VALID) continue;
if (x == i && y == j) {
board->states[i] = state;
}
// Minimize score!
value = MIN(value, node_traverse(board, depth - 1, alpha, beta, BLACK, sdata));
if (value < alpha) {
goto end; // α cutoff
}
if (threadIdx.x == 0 && threadIdx.y == 0) {
beta = MIN(beta, value);
resolve(&alpha, &beta);
}
// Reverse move
if (x == i && y == j) {
board->states[i] = state;
}
count += 1;
}
}
}
end: return value;
}
__global__
void traverse_wrapper(board_t *board, int *depth) {
extern __shared__ int sdata[];
// int idx = blockIdx.x;
node_traverse(board, *depth, INT_MIN, INT_MAX, BLACK, (int *) sdata);
}
float parallel_prune(int depth, int dim_x, int dim_y) {
int *d_depth;
state_t *d_states;
board_t *d_board, board;
cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaMalloc((void **) &d_depth, sizeof(int));
cudaMemcpy(d_depth, &depth, sizeof(int), cudaMemcpyHostToDevice);
cudaMalloc((void **) &d_states, sizeof(state_t) * dim_x * dim_y);
state_t *base_states = setup_board(dim_x, dim_y);
cudaMemcpy(d_states, base_states, sizeof(state_t) * dim_x * dim_y, cudaMemcpyHostToDevice);
board.dim_x = dim_x;
board.dim_y = dim_y;
board.states = d_states;
cudaMalloc((void **) &d_board, sizeof(board_t));
cudaMemcpy(d_board, &board, sizeof(board_t), cudaMemcpyHostToDevice);
int alpha = INT_MIN;
int beta = INT_MAX;
cudaMemcpyToSymbol("galpha", &alpha, sizeof(int), size_t(0), cudaMemcpyHostToDevice);
cudaMemcpyToSymbol("gbeta", &beta, sizeof(int), size_t(0), cudaMemcpyHostToDevice);
dim3 grid(1);
dim3 block(dim_x, dim_y);
cudaEventRecord(start);
traverse_wrapper <<<grid, block, dim_x * dim_y>>> (d_board, d_depth);
cudaEventRecord(stop);
cudaFree(d_depth);
cudaFree(d_states);
cudaFree(d_board);
cudaEventSynchronize(stop);
float milliseconds = 0.0;
cudaEventElapsedTime(&milliseconds, start, stop);
return milliseconds;
// cudaMalloc((void **) &d_boards, sizeof(state_t *) * MAX_MOVES);
// for (int i = 0; i < depth; i++) {
// cudaMemcpy(&(d_depths[i]), &depth, sizeof(int), cudaMemcpyHostToDevice);
// }
// state_t *base_board = setup_board(dim_x, dim_y);
// for (int i = 0; i < MAX_MOVES; i++) {
// state_t *d_board;
// cudaMalloc((void **) &d_board, sizeof(state_t) * dim_x * dim_y);
// boards[i] = d_board;
// // cudaMemcpy(d_board, base_board, sizeof(state_t) * dim_x * dim_y, cudaMemcpyHostToDevice);
// cudaMemcpy(&(d_boards[i]), &d_board, sizeof(state_t *), cudaMemcpyHostToDevice);
// }
// int cur_move[2] = {(dim_x / 2) - 1, (dim_y / 2) + 1}; // Arbitrary leftmost move, heurestic used for better performance
// state_t m_states[2] = {BLACK, WHITE};
// state_t cur_state = m_states[i % 2];
// Setup boards
// for (int j = 0; j < MAX_MOVES; j++) {
// cudaMemcpy(boards[j], base_board, sizeof(state_t) * dim_x * dim_y, cudaMemcpyHostToDevice);
// }
// // Perform leftmost move of game tree
// base_board[cur_move[0] * dim_y + cur_move[1]] = cur_state;
// // Update move
// if (cur_move[1] < dim_y) {
// cur_move[1] += 1;
// } else {
// cur_move[0] += 1;
// }
// // Get evaluation
// int val = seq_eval(base_board, dim_x, dim_y, cur_state);
// if (i % 2 == 0) {
// alpha = max(val, alpha);
// } else {
// beta = min(val, beta);
// }
}