-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbutterworth.cpp
345 lines (251 loc) · 10.4 KB
/
butterworth.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
// Author: Alessandro Gentilini, 2013, based on a work by Toby Breckon,
// originally found at http://public.cranfield.ac.uk/c5354/teaching/dip/opencv/lecture_demos/c++/butterworth_lowpass.cpp
// n ow at https://github.com/tobybreckon/cpp-examples-ipcv/blob/master/butterworth_lowpass.cpp
// Example : apply butterworth low pass filtering to input image/video
// usage: prog {<image_name> | <video_name>}
// Author : Toby Breckon, [email protected]
// Copyright (c) 2011 School of Engineering, Cranfield University
// License : LGPL - http://www.gnu.org/licenses/lgpl.html
#include <cv.h> // open cv general include file
#include <highgui.h> // open cv GUI include file
#include <iostream> // standard C++ I/O
using namespace cv; // OpenCV API is in the C++ "cv" namespace
/******************************************************************************/
// setup the cameras properly based on OS platform
// 0 in linux gives first camera for v4l
//-1 in windows gives first device or user dialog selection
#ifdef linux
#define CAMERA_INDEX 0
#else
#define CAMERA_INDEX -1
#endif
/******************************************************************************/
// Rearrange the quadrants of a Fourier image so that the origin is at
// the image center
void shiftDFT(Mat &fImage )
{
Mat tmp, q0, q1, q2, q3;
// first crop the image, if it has an odd number of rows or columns
fImage = fImage(Rect(0, 0, fImage.cols & -2, fImage.rows & -2));
int cx = fImage.cols / 2;
int cy = fImage.rows / 2;
// rearrange the quadrants of Fourier image
// so that the origin is at the image center
q0 = fImage(Rect(0, 0, cx, cy));
q1 = fImage(Rect(cx, 0, cx, cy));
q2 = fImage(Rect(0, cy, cx, cy));
q3 = fImage(Rect(cx, cy, cx, cy));
q0.copyTo(tmp);
q3.copyTo(q0);
tmp.copyTo(q3);
q1.copyTo(tmp);
q2.copyTo(q1);
tmp.copyTo(q2);
}
/******************************************************************************/
// return a floating point spectrum magnitude image scaled for user viewing
// complexImg- input dft (2 channel floating point, Real + Imaginary fourier image)
// rearrange - perform rearrangement of DFT quadrants if true
// return value - pointer to output spectrum magnitude image scaled for user viewing
Mat create_spectrum_magnitude_display(Mat &complexImg, bool rearrange)
{
Mat planes[2];
// compute magnitude spectrum (N.B. for display)
// compute log(1 + sqrt(Re(DFT(img))**2 + Im(DFT(img))**2))
split(complexImg, planes);
magnitude(planes[0], planes[1], planes[0]);
Mat mag = (planes[0]).clone();
mag += Scalar::all(1);
log(mag, mag);
if (rearrange)
{
// re-arrange the quaderants
shiftDFT(mag);
}
normalize(mag, mag, 0, 1, CV_MINMAX);
return mag;
}
/******************************************************************************/
// create a 2-channel butterworth low-pass filter with radius D, order n
// (assumes pre-aollocated size of dft_Filter specifies dimensions)
void create_butterworth_lowpass_filter(Mat &dft_Filter, int D, int n, int W)
{
Mat tmp = Mat(dft_Filter.rows, dft_Filter.cols, CV_32F);
Point centre = Point(dft_Filter.rows / 2, dft_Filter.cols / 2);
double radius;
// based on the forumla in the IP notes (p. 130 of 2009/10 version)
// see also HIPR2 on-line
for (int i = 0; i < dft_Filter.rows; i++)
{
for (int j = 0; j < dft_Filter.cols; j++)
{
radius = (double) sqrt(pow((i - centre.x), 2.0) + pow((double) (j - centre.y), 2.0));
// Butterworth low pass:
// tmp.at<float>(i,j) = (float)
// ( 1 / (1 + pow((double) (radius / D), (double) (2 * n))));
// Butterworth band reject, page 244, paragraph 5.4.1, Gonzalez Woods, "Digital Image Processing 2nd Edition"
// D(u,v) -> radius
// D_0 -> D
tmp.at<float>(i, j) = (float)
( 1 / (1 + pow((double) (radius * W) / ( pow((double)radius, 2) - D * D ), (double) (2 * n))));
}
}
Mat toMerge[] = {tmp, tmp};
merge(toMerge, 2, dft_Filter);
}
/******************************************************************************/
int main( int argc, char **argv )
{
Mat img, imgGray, imgOutput; // image object(s)
VideoCapture cap; // capture object
Mat padded; // fourier image objects and arrays
Mat complexImg, filter, filterOutput;
Mat planes[2], mag;
int N, M; // fourier image sizes
int radius = 20; // low pass filter parameter
int order = 2; // low pass filter parameter
int width = 3;
const string originalName = "Input Image (grayscale)"; // window name
const string spectrumMagName = "Magnitude Image (log transformed)"; // window name
const string lowPassName = "Butterworth Low Pass Filtered (grayscale)"; // window name
const string filterName = "Filter Image"; // window nam
bool keepProcessing = true; // loop control flag
int key; // user input
int EVENT_LOOP_DELAY = 40; // delay for GUI window
// 40 ms equates to 1000ms/25fps = 40ms per frame
// if command line arguments are provided try to read image/video_name
// otherwise default to capture from attached H/W camera
if (
( argc == 2 && (!(img = imread( argv[1], CV_LOAD_IMAGE_COLOR)).empty())) ||
( argc == 2 && (cap.open(argv[1]) == true )) ||
( argc != 2 && (cap.open(CAMERA_INDEX) == true))
)
{
// create window object (use flag=0 to allow resize, 1 to auto fix size)
namedWindow(originalName, 0);
namedWindow(spectrumMagName, 0);
namedWindow(lowPassName, 0);
namedWindow(filterName, 0);
// if capture object in use (i.e. video/camera)
// get image from capture object
if (cap.isOpened())
{
cap >> img;
if (img.empty())
{
if (argc == 2)
{
std::cerr << "End of video file reached" << std::endl;
}
else
{
std::cerr << "ERROR: cannot get next fram from camera"
<< std::endl;
}
exit(0);
}
}
// setup the DFT image sizes
M = getOptimalDFTSize( img.rows );
N = getOptimalDFTSize( img.cols );
// add adjustable trackbar for low pass filter threshold parameter
createTrackbar("Radius", lowPassName, &radius, (min(M, N) / 2));
createTrackbar("Order", lowPassName, &order, 10);
createTrackbar("Width", lowPassName, &width, (min(M, N) / 2));
// start main loop
while (keepProcessing)
{
// if capture object in use (i.e. video/camera)
// get image from capture object
if (cap.isOpened())
{
cap >> img;
if (img.empty())
{
if (argc == 2)
{
std::cerr << "End of video file reached" << std::endl;
}
else
{
std::cerr << "ERROR: cannot get next fram from camera"
<< std::endl;
}
exit(0);
}
}
// ***
// convert input to grayscale
cvtColor(img, imgGray, CV_BGR2GRAY);
// setup the DFT images
copyMakeBorder(imgGray, padded, 0, M - imgGray.rows, 0,
N - imgGray.cols, BORDER_CONSTANT, Scalar::all(0));
planes[0] = Mat_<float>(padded);
planes[1] = Mat::zeros(padded.size(), CV_32F);
merge(planes, 2, complexImg);
// do the DFT
dft(complexImg, complexImg);
// construct the filter (same size as complex image)
filter = complexImg.clone();
create_butterworth_lowpass_filter(filter, radius, order, width);
// apply filter
shiftDFT(complexImg);
mulSpectrums(complexImg, filter, complexImg, 0);
shiftDFT(complexImg);
// create magnitude spectrum for display
mag = create_spectrum_magnitude_display(complexImg, true);
// do inverse DFT on filtered image
idft(complexImg, complexImg);
// split into planes and extract plane 0 as output image
cv::Mat myplanes[2];
split(complexImg, myplanes);
double minimum = -1;
double maximum = -1;
cv::Point minloc(-1, -1), maxloc(-1, -1);
minMaxLoc(myplanes[0], &minimum, &maximum, &minloc, &maxloc);
std::cout << "min=" << minimum << "@" << minloc << "\tmax=" << maximum << "@" << maxloc << "\n";
//normalize(myplanes[0], imgOutput, 0, 1, CV_MINMAX);
imgOutput = myplanes[0];
// do the same with the filter image
split(filter, planes);
normalize(planes[0], filterOutput, 0, 1, CV_MINMAX);
// ***
// display image in window
imshow(originalName, imgGray);
imshow(spectrumMagName, mag);
imshow(lowPassName, imgOutput);
imshow(filterName, filterOutput);
// start event processing loop (very important,in fact essential for GUI)
// 40 ms roughly equates to 1000ms/25fps = 4ms per frame
key = waitKey(EVENT_LOOP_DELAY);
if (key == 'x')
{
// if user presses "x" then exit
std::cout << "Keyboard exit requested : exiting now - bye!"
<< std::endl;
keepProcessing = false;
}
}
// the camera will be deinitialized automatically in VideoCapture destructor
// all OK : main returns 0
return 0;
}
// not OK : main returns -1
return -1;
}
double deg2rad( double a )
{
return (M_PI*a)/180;
}
void create_a_model()
{
cv::Mat img(360, 360, cv::DataType<unsigned char>::type);
for ( size_t i = 0; i < img.cols; i+=1 )
{
for ( size_t j = 0; j < img.rows; j+=1 )
{
img.at<unsigned char>(i,j) = 127 + 127 * sin(deg2rad(20*j));
}
}
imwrite("sin.bmp", img);
}