-
Notifications
You must be signed in to change notification settings - Fork 264
/
Copy path038 Combination Sum II py3.py
67 lines (53 loc) · 1.64 KB
/
038 Combination Sum II py3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#!/usr/bin/python3
"""
Given a collection of candidate numbers (candidates) and a target number
(target), find all unique combinations in candidates where the candidate numbers
sums to target.
Each number in candidates may only be used once in the combination.
Note:
All numbers (including target) will be positive integers.
The solution set must not contain duplicate combinations.
Example 1:
Input: candidates = [10,1,2,7,6,1,5], target = 8,
A solution set is:
[
[1, 7],
[1, 2, 5],
[2, 6],
[1, 1, 6]
]
Example 2:
Input: candidates = [2,5,2,1,2], target = 5,
A solution set is:
[
[1,2,2],
[5]
]
"""
from typing import List
class Solution:
def combinationSum2(self, candidates: List[int], target: int) -> List[List[int]]:
ret = []
candidates.sort()
self.dfs(candidates, 0, [], 0, target, ret)
return ret
def dfs(self, candidates, i, cur, cur_sum, target, ret):
if cur_sum == target:
ret.append(list(cur))
return
if cur_sum > target or i >= len(candidates):
return
# not choose A_i
# to de-dup, need to jump
j = i + 1
while j < len(candidates) and candidates[j] == candidates[i]:
j += 1
self.dfs(candidates, j, cur, cur_sum, target, ret)
# choose A_i
cur.append(candidates[i])
cur_sum += candidates[i]
self.dfs(candidates, i + 1, cur, cur_sum, target, ret)
cur.pop()
cur_sum -= candidates[i]
if __name__ == "__main__":
assert Solution().combinationSum2([2,5,2,1,2], 5) == [[5], [1,2,2]]