forked from diffpy/diffpy.utils
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresample.py
135 lines (112 loc) · 4.15 KB
/
resample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#!/usr/bin/env python
##############################################################################
#
# diffpy.utils by DANSE Diffraction group
# Simon J. L. Billinge
# (c) 2010 The Trustees of Columbia University
# in the City of New York. All rights reserved.
#
# File coded by: Chris Farrow
#
# See AUTHORS.txt for a list of people who contributed.
# See LICENSE_DANSE.txt for license information.
#
##############################################################################
"""Various utilities related to data parsing and manipulation."""
import numpy
# NOTE - this should be faster than resample below and conforms more closely to
# numpy.interp. I'm keeping resample for legacy reasons.
def wsinterp(x, xp, fp, left=None, right=None):
"""One-dimensional Whittaker-Shannon interpolation.
This uses the Whittaker-Shannon interpolation formula to interpolate the value of fp (array),
which is defined over xp (array), at x (array or float).
Parameters
----------
x: ndarray
Desired range for interpolation.
xp: ndarray
Defined range for fp.
fp: ndarray
Function to be interpolated.
left: float
If given, set fp for x < xp[0] to left. Otherwise, if left is None (default) or not given,
set fp for x < xp[0] to fp evaluated at xp[-1].
right: float
If given, set fp for x > xp[-1] to right. Otherwise, if right is None (default) or not given, set fp for
x > xp[-1] to fp evaluated at xp[-1].
Returns
-------
float:
If input x is a scalar (not an array), return the interpolated value at x.
ndarray:
If input x is an array, return the interpolated array with dimensions of x.
"""
scalar = numpy.isscalar(x)
if scalar:
x = numpy.array(x)
x.resize(1)
# shape = (nxp, nx), nxp copies of x data span axis 1
u = numpy.resize(x, (len(xp), len(x)))
# Must take transpose of u for proper broadcasting with xp.
# shape = (nx, nxp), v(xp) data spans axis 1
v = (xp - u.T) / (xp[1] - xp[0])
# shape = (nx, nxp), m(v) data spans axis 1
m = fp * numpy.sinc(v)
# Sum over m(v) (axis 1)
fp_at_x = numpy.sum(m, axis=1)
# Enforce left and right
if left is None:
left = fp[0]
fp_at_x[x < xp[0]] = left
if right is None:
right = fp[-1]
fp_at_x[x > xp[-1]] = right
# Return a float if we got a float
if scalar:
return float(fp_at_x[0])
return fp_at_x
def resample(r, s, dr):
"""Resample a PDF on a new grid.
This uses the Whittaker-Shannon interpolation formula to put s1 on a new grid if dr is less than the sampling
interval of r1, or linear interpolation if dr is greater than the sampling interval of r1.
Parameters
----------
r
The r-grid used for s1.
s
The signal to be resampled.
dr
The new sampling interval.
Returns
-------
Returns resampled (r, s).
"""
dr0 = r[1] - r[0] # Constant timestep
if dr0 < dr:
rnew = numpy.arange(r[0], r[-1] + 0.5 * dr, dr)
snew = numpy.interp(rnew, r, s)
return rnew, snew
elif dr0 > dr:
# Tried to pad the end of s to dampen, but nothing works.
# m = (s[-1] - s[-2]) / dr0
# b = (s[-2] * r[-1] - s[-1] * r[-2]) / dr0
# rpad = r[-1] + numpy.arange(1, len(s))*dr0
# spad = rpad * m + b
# spad = numpy.concatenate([s,spad])
# rnew = numpy.arange(0, rpad[-1], dr)
# snew = numpy.zeros_like(rnew)
# Accommodate for the fact that r[0] might not be 0
# u = (rnew-r[0]) / dr0
# for n in range(len(spad)):
# snew += spad[n] * numpy.sinc(u - n)
# sel = numpy.logical_and(rnew >= r[0], rnew <= r[-1])
rnew = numpy.arange(0, r[-1], dr)
snew = numpy.zeros_like(rnew)
u = (rnew - r[0]) / dr0
for n in range(len(s)):
snew += s[n] * numpy.sinc(u - n)
sel = numpy.logical_and(rnew >= r[0], rnew <= r[-1])
return rnew[sel], snew[sel]
# If we got here, then no resampling is required
return r.copy(), s.copy()
# End of file