-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmain.py
160 lines (141 loc) · 5.55 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#!/usr/bin/env python
import pdb
import torch
import yaml
import random
import argparse
import numpy as np
import solvers
def str2bool(v):
''' Convert to True/False '''
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def get_parser():
''' Load scripts arguments '''
# parameter priority: command line > config > default
parser = argparse.ArgumentParser(description='Default Configurations')
parser.add_argument('--work-dir',
default='./work_dir/debug',
help='the work folder for storing results')
parser.add_argument('--config',
default=None,
help='path to the configuration file')
# processor
parser.add_argument('--solver',
default='Processor',
type=str,
help='Type of Solver')
parser.add_argument('--mode',
default='train',
help='must be train or test')
# general config
parser.add_argument('--seed',
type=int,
default=-1,
help='random seed for pytorch')
parser.add_argument('--save-interval',
type=int,
default=30,
help='the interval for storing models (#iteration)')
parser.add_argument('--name', type=str, default='e', help='log path')
parser.add_argument('--save-name',
type=str,
default='model',
help='Checkpoint name')
parser.add_argument('--print-model',
type=str2bool,
default=True,
help='print model architecture or not')
parser.add_argument('--print-log',
type=str2bool,
default=True,
help='print logging or not')
parser.add_argument('--test-interval',
type=int,
default=1000,
help='the interval for testing models (#iteration)')
parser.add_argument('--log-interval',
type=int,
default=1000,
help='the interval for logging (#iteration)')
parser.add_argument(
'--test-before-train',
type=str2bool,
default=True,
help='test the pretrained model before training or not')
# dataset
parser.add_argument('--dataset', default='PairLoader', type=str)
parser.add_argument('--dataset-args', default=dict(), type=dict)
# hyper parameters
parser.add_argument('--start-iter',
type=int,
default=0,
help='start training from which epoch')
parser.add_argument('--num-iter',
type=int,
default=1,
help='# of epochs for training')
# Model
parser.add_argument('--pretrained',
type=str,
default=None,
help="Path of pretrained models (not load grads)")
parser.add_argument('--resume',
type=str,
default=None,
help="Path of resuming checkpoint (load grads)")
parser.add_argument(
'--auto-resume',
type=str2bool,
default=False,
help=
"If true, automatically resume from the latest checkpoint in the work_dir"
)
parser.add_argument('--model', type=str, default='', help='SetNet')
parser.add_argument('--model-args', type=dict, default={})
# Loss
parser.add_argument('--loss',
type=str,
default='',
help='Class name of loss')
parser.add_argument('--loss-args',
type=dict,
default={},
help='Args for loss')
# optim
parser.add_argument('--optimizer',
type=str,
default='SGD',
help='Type of optimizer')
parser.add_argument('--weight-decay',
type=float,
default=0.0005,
help='weight decay for SGD optimizer')
parser.add_argument('--nesterov',
type=str2bool,
default=True,
help='use nesterov or not')
parser.add_argument('--betas',
default=(0.9, 0.999),
type=tuple,
help='Betas for Adam optimizer')
parser.add_argument('--lr-decay', type=dict, default={})
# multi-gpu
parser.add_argument('--local_rank', type=int)
parser.add_argument('--mgpu', type=str2bool, default=False)
return parser
if __name__ == '__main__':
parser = get_parser()
p = parser.parse_args()
if p.config is not None:
with open(p.config, 'r') as f:
default_arg = yaml.load(f, Loader=yaml.FullLoader)
parser.set_defaults(**default_arg)
arg = parser.parse_args()
Solver = getattr(solvers, arg.solver)
p = Solver(arg)
p.start()