-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathTimeSeries.py
332 lines (225 loc) · 10.9 KB
/
TimeSeries.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# SIREN network
# Code adapted from the following GitHub repository:
# https://github.com/vsitzmann/siren?tab=readme-ov-file
import os
import numpy as np
import torch
import torch.nn as nn
# from ParticleGraph.generators.utils import get_time_series
import matplotlib
from matplotlib import pyplot as plt
from tifffile import imread, imsave
from tqdm import trange
from ParticleGraph.utils import *
from ParticleGraph.config import ParticleGraphConfig
import seaborn as sns
import torch.nn.functional as F
import torch.nn as nn
from torch.utils.data import DataLoader, Dataset
from PIL import Image
import skimage
from torchvision.transforms import Resize, Compose, ToTensor, Normalize
class SineLayer(nn.Module):
# See paper sec. 3.2, final paragraph, and supplement Sec. 1.5 for discussion of omega_0.
# If is_first=True, omega_0 is a frequency factor which simply multiplies the activations before the
# nonlinearity. Different signals may require different omega_0 in the first layer - this is a
# hyperparameter.
# If is_first=False, then the weights will be divided by omega_0 so as to keep the magnitude of
# activations constant, but boost gradients to the weight matrix (see supplement Sec. 1.5)
def __init__(self, in_features, out_features, bias=True,
is_first=False, omega_0=30):
super().__init__()
self.omega_0 = omega_0
self.is_first = is_first
self.in_features = in_features
self.linear = nn.Linear(in_features, out_features, bias=bias)
self.init_weights()
def init_weights(self):
with torch.no_grad():
if self.is_first:
self.linear.weight.uniform_(-1 / self.in_features,
1 / self.in_features)
else:
self.linear.weight.uniform_(-np.sqrt(6 / self.in_features) / self.omega_0,
np.sqrt(6 / self.in_features) / self.omega_0)
def forward(self, input):
return torch.sin(self.omega_0 * self.linear(input))
class Siren(nn.Module):
def __init__(self, in_features, hidden_features, hidden_layers, out_features, outermost_linear=False,
first_omega_0=30, hidden_omega_0=30.):
super(Siren, self).__init__()
self.net = []
self.net.append(SineLayer(in_features, hidden_features,
is_first=True, omega_0=first_omega_0))
for i in range(hidden_layers):
self.net.append(SineLayer(hidden_features, hidden_features,
is_first=False, omega_0=hidden_omega_0))
if outermost_linear:
final_linear = nn.Linear(hidden_features, out_features)
with torch.no_grad():
final_linear.weight.uniform_(-np.sqrt(6 / hidden_features) / hidden_omega_0,
np.sqrt(6 / hidden_features) / hidden_omega_0)
self.net.append(final_linear)
else:
self.net.append(SineLayer(hidden_features, out_features,
is_first=False, omega_0=hidden_omega_0))
self.net = nn.Sequential(*self.net)
def forward(self, coords):
output = self.net(coords)
return output
def forward_with_activations(self, coords, retain_grad=False):
'''Returns not only model output, but also intermediate activations.
Only used for visualizing activations later!'''
activations = OrderedDict()
activation_count = 0
x = coords.clone().detach().requires_grad_(True)
activations['input'] = x
for i, layer in enumerate(self.net):
if isinstance(layer, SineLayer):
x, intermed = layer.forward_with_intermediate(x)
if retain_grad:
x.retain_grad()
intermed.retain_grad()
activations['_'.join((str(layer.__class__), "%d" % activation_count))] = intermed
activation_count += 1
else:
x = layer(x)
if retain_grad:
x.retain_grad()
activations['_'.join((str(layer.__class__), "%d" % activation_count))] = x
activation_count += 1
return activations
class SirenCollection(nn.Module):
def __init__(self, in_features, hidden_features, hidden_layers, out_features, outermost_linear=False, first_omega_0=30, hidden_omega_0=30.):
super(SirenCollection, self).__init__()
self.sirens = nn.ModuleList([Siren(in_features=in_features, hidden_features=hidden_features, hidden_layers=hidden_layers, out_features=out_features, outermost_linear=outermost_linear, first_omega_0=first_omega_0, hidden_omega_0=hidden_omega_0) for _ in range(100)])
# self.sirens = nn.ModuleList([Siren(in_features=in_features, hidden_features=hidden_features, hidden_layers=hidden_layers-1, out_features=hidden_features, outermost_linear=False, first_omega_0=first_omega_0, hidden_omega_0=hidden_omega_0) for _ in range(100)])
# self.common = Siren(in_features=hidden_features, hidden_features=hidden_features, hidden_layers=1, out_features=out_features, outermost_linear=True, first_omega_0=first_omega_0, hidden_omega_0=hidden_omega_0)
def forward(self, x, n):
outputs = self.sirens[n](x)
# outputs = self.common(outputs)
return outputs
class MLP(nn.Module):
def __init__(self, input_size=None, output_size=None, nlayers=None, hidden_size=None, device=None, activation=None, initialisation=None):
super(MLP, self).__init__()
self.layers = nn.ModuleList()
self.layers.append(nn.Linear(input_size, hidden_size, device=device))
if nlayers > 2:
for i in range(1, nlayers - 1):
layer = nn.Linear(hidden_size, hidden_size, device=device)
nn.init.normal_(layer.weight, std=0.1)
nn.init.zeros_(layer.bias)
self.layers.append(layer)
layer = nn.Linear(hidden_size, output_size, device=device)
if initialisation == 'zeros':
nn.init.zeros_(layer.weight)
nn.init.zeros_(layer.bias)
else :
nn.init.normal_(layer.weight, std=0.1)
nn.init.zeros_(layer.bias)
self.layers.append(layer)
if activation=='tanh':
self.activation = F.tanh
else:
self.activation = F.relu
def forward(self, x):
for l in range(len(self.layers) - 1):
x = self.layers[l](x)
x = self.activation(x)
x = self.layers[-1](x)
return x
if __name__ == '__main__':
import torch.nn as nn
import torch.optim as optim
import numpy as np
from tqdm import trange
import matplotlib
import matplotlib.pyplot as plt
import torch
matplotlib.use("Qt5Agg")
config_list = ['signal_N6_a1']
for config_file_ in config_list:
config_file, pre_folder = add_pre_folder(config_file_)
config = ParticleGraphConfig.from_yaml(f'./config/{config_file}.yaml')
config.dataset = pre_folder + config.dataset
config.config_file = pre_folder + config_file_
device = set_device(config.training.device)
print(f'device {device}')
print(f'folder {config.dataset}')
dataset_name = config.dataset
simulation_config = config.simulation
train_config = config.training
model_config = config.graph_model
n_frames = config.simulation.n_frames
n_particles = config.simulation.n_particles
n_runs = config.training.n_runs
n_particle_types = config.simulation.n_particle_types
delta_t = config.simulation.delta_t
p = config.simulation.params
omega = model_config.omega
cmap = CustomColorMap(config=config)
dimension = config.simulation.dimension
max_radius = config.simulation.max_radius
field_type = model_config.field_type
x_list = []
y_list = []
for run in trange(1):
if os.path.exists(f'graphs_data/{dataset_name}/x_list_{run}.pt'):
x = torch.load(f'graphs_data/{dataset_name}/x_list_{run}.pt', map_location=device)
y = torch.load(f'graphs_data/{dataset_name}/y_list_{run}.pt', map_location=device)
x = to_numpy(torch.stack(x))
y = to_numpy(torch.stack(y))
else:
x = np.load(f'graphs_data/{dataset_name}/x_list_{run}.npy')
y = np.load(f'graphs_data/{dataset_name}/y_list_{run}.npy')
x_list.append(x)
y_list.append(y)
activity = torch.tensor(x_list[0], device=device)
activity = activity[:, :, 8:9].squeeze()
activity = activity.t()
# plt.figure(figsize=(15, 10))
# n = np.random.permutation(n_particles)
# for i in range(10):
# plt.plot(to_numpy(activity[n[i].astype(int), :]), linewidth=2)
# plt.xlabel('time', fontsize=64)
# plt.ylabel('$x_{i}$', fontsize=64)
# plt.xticks([0, 20000], fontsize=48)
# plt.yticks(fontsize=48)
# plt.tight_layout()
# plt.show()
# nlayers = 32
# model = MLP(input_size=1, output_size=1, nlayers=nlayers, hidden_size=512, device=device)
model = SirenCollection(in_features=1, out_features=1, hidden_features=64,hidden_layers=3, first_omega_0=30, hidden_omega_0=30, outermost_linear=True)
model.to(device)
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f'number of learnable parameters: {count_parameters(model) //100}')
optimizer = optim.Adam(model.parameters(), lr=1E-4)
model.train()
indices = np.arange(0, n_frames+1,100).astype(int)
t = torch.linspace(0, n_frames+1,(n_frames+1)//100, dtype=torch.float32, device=device) / 1000
t = t[None,:,None]
y = activity[0][indices]
y = y[None,0:1000,None]
y_list = list([])
for k in range(100):
y = activity[k][indices]
y = y[None,0:1000,None]
y_list.append(y)
batch_size = 100
for epoch in trange(100000):
k = np.random.randint(0,10)
time = np.random.randint(0,1000,100).astype(int)
optimizer.zero_grad()
pred = model(t[:,time,:],k)[0]
loss = (pred- y_list[k][:,time,:]).norm(2)
loss.backward()
optimizer.step()
if (epoch+1)%2500==0:
pred = model(t,k)[0]
fig = plt.figure()
plt.plot(to_numpy(t.squeeze()), to_numpy(y_list[k].squeeze()), linewidth=1)
plt.plot(to_numpy(t.squeeze()), to_numpy(pred.squeeze()), linewidth=1)
plt.tight_layout()
plt.savefig(f'./tmp/siren_{epoch+1}.png')
plt.close()