-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3_4_2025.py
74 lines (53 loc) · 2.25 KB
/
3_4_2025.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from typing import List
class Solution:
def toLowerCase(self, s: str) -> str:
return s.lower()
# brute force, works but not efficient, O(n^2)
class Solution:
def numPairsDivisibleBy60(self, time: List[int]) -> int:
num_divisible_pairs = 0
for first_index, first_value in enumerate(time):
for second_index, second_value in enumerate(time):
if (first_index != second_index) and ((first_value + second_value) % 60 == 0):
num_divisible_pairs += 1
return int(num_divisible_pairs / 2)
# O(n) solution, store remainders in a dictionary
class Solution:
def numPairsDivisibleBy60(self, time: List[int]) -> int:
remainder_count = {}
num_divisible_pairs = 0
for t in time:
remainder = t % 60 # Get remainder when divided by 60
complement = (60 - remainder) % 60 # Find its complement that makes sum 60
if complement in remainder_count:
num_divisible_pairs += remainder_count[complement] # Count valid pairs
# Store remainder count
remainder_count[remainder] = remainder_count.get(remainder, 0) + 1
return num_divisible_pairs
# basic method, for <-10k digits
class Solution:
def addToArrayForm(self, num: List[int], k: int) -> List[int]:
string_num = ""
for single_num in num:
string_num += f"{single_num}"
int_num = int(string_num)
new_sum = int_num + k
new_sum_string = str(new_sum)
array_num = []
for char in new_sum_string:
array_num.append(int(char))
return array_num
from typing import List
class Solution:
def addToArrayForm(self, num: List[int], k: int) -> List[int]:
carry = k
i = len(num) - 1
while i >= 0 or carry > 0:
if i >= 0:
carry += num[i]
num[i] = carry % 10 # Keep only the last digit
else:
num.insert(0, carry % 10) # Insert at the front (for extra digits)
carry //= 10 # Carry forward
i -= 1
return num