-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
42 lines (35 loc) · 1.23 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import pickle
import numpy as np
class Model():
def __init__(self, model, features, labels):
if not isinstance(features, list): raise("features must be a list!")
if not isinstance(labels, list): raise("labels must be a list!")
self.model = model
self.features = features
self.labels = labels
@staticmethod
def fit_create(model, X, y):
return Model(model.fit(X,y), X.columns.tolist(), np.unique(y).tolist())
def fit(self, X, y):
self.model.fit(X,y)
self.features = X.columns.tolist()
self.labels = np.unique(y).tolist()
return self
def predict(self, X):
return self.model.predict(X)
def predict_proba(self, X):
return self.model.predict_proba(X)
# EXPORT & IMPORT
def dump(self, filename):
with open(filename, 'w') as f:
pickle.dump((
pickle.dumps(self.model).encode('zlib'),
self.features,
self.labels
), f)
@staticmethod
def load(filename):
with open(filename, 'r') as f:
model, features, labels = pickle.load(f)
model = pickle.loads(model.decode('zlib'))
return Model(model, features, labels)