-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnavigation.py
194 lines (168 loc) · 8.19 KB
/
navigation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import keypad
import RPi.GPIO as GPIO
from time import time, sleep
from imu import Imu
from datetime import datetime
if GPIO.getmode() == -1: GPIO.setmode(GPIO.BOARD)
def interp(x,x0,x1,y0,y1): return y0 + (y1-y0) * (float(x-x0)/(x1-x0))
class Rover():
def __init__(self, m1, m2, jib=None, dist=None, verbose=False):
self.m1 = m1
self.m2 = m2
self.imu = Imu()
self.dist = dist
self.jib = jib
self.motorlog = []
# CURRENT STATE
self.state = 'stop'
self.power = 0
self.steerpower = 0
self.minpower = 30
self.minsteerpower = 20
# DEBUG
self.verbose = verbose
print "Hi, I'm Rover... hopefully I won't roll over!"
def keycontrol(self):
mapping = {
# KEY BINDINGS: key to function (with default value)
# ROVER KEYS
'w': 'fw', 's': 'rw', 'a': 'left', 'd': 'right',
' ': 'stop', 'r': 'init_log', 't': 'save_log',
# JIB KEYS
'i': 'jib.moveup', 'j': 'jib.moveleft',
'k': 'jib.movedw', 'l': 'jib.moveright',
# MEASURE DISTANCE
'm': 'print_distance'
}
print "ROVER KEYPAD: initialized"
keypad.keypad(self, mapping)
print "ROVER KEYPAD: terminated"
# DIRECTION
def stop(self):
self.m1.stop(); self.m2.stop(); self.state = 'stop'; self.power = 0
self.motorlog.append([time(),'stop',0,0])
if self.verbose: print "stop | m1: %i | m2: %i" % (0,0)
def fw(self, seconds=None):
if m1.use_pwm and m2.use_pwm:
if self.state == 'rw': self.power = 0
self.power = min(100, max(self.minpower, self.power + 10)); self.steerpower = 0
self._fw(seconds, power=self.power)
else: self._fw(seconds)
def rw(self, seconds=None):
if m1.use_pwm and m2.use_pwm:
if self.state == 'fw': self.power = 0
self.power = min(100, max(self.minpower, self.power + 10)); self.steerpower = 0
self._rw(seconds, power=self.power)
else: self._rw(seconds)
def left(self, seconds=None):
if m1.use_pwm and m2.use_pwm:
self.steerpower = min(100, max(self.minsteerpower, self.steerpower + 10))
self._left(seconds, steerpower=self.steerpower)
else: self._left(seconds)
def right(self, seconds=None):
if m1.use_pwm and m2.use_pwm:
self.steerpower = min(100, max(self.minsteerpower, self.steerpower + 10))
self._right(seconds, steerpower=self.steerpower)
else: self._right(seconds)
def _fw(self, seconds=None, power=100):
self.m1.fw(power=power); self.m2.fw(power=power); self.state = 'fw'
self.motorlog.append([time(),'fw',power,power])
if self.verbose: print "fw: %i%% | m1.fw: %i | m2.fw: %i" % (power,power,power)
if seconds is not None:
sleep(seconds); self.stop()
def _rw(self, seconds=None, power=100):
self.m1.rw(power=power); self.m2.rw(power=power); self.state = 'rw'
self.motorlog.append([time(),'rw',power,power])
if self.verbose: print "rw: %i%% | m1.rw: %i | m2.rw %i" % (power,power,power)
if seconds is not None:
sleep(seconds); self.stop()
def _left(self, seconds=None, steerpower=100):
if m1.use_pwm and m2.use_pwm:
# if the rover is not moving, rotating power is forced to 100
if self.state == 'stop': steerpower = 100; self.power = 100; self.state ='fw'
m2power = self.power
if steerpower >=50:
# STRONG TURN (inverted direction on motors)
m1power = ((steerpower-50)*2/100.)*self.power
m1power = max(m1power, self.minpower) # fixing low velocity turns
self.m1.rw(power=m1power) if self.state == 'fw' else self.m1.fw(power=m1power)
m1dir = 'rw' if self.state == 'fw' else 'fw'
else:
# LIGHT TURN (same direction, but slower motors)
m1power = ((50-steerpower)*2/100.)*self.power
m2power, m1power = max(m2power, 80), max(m1power, 80) # fixing low velocity turns
self.m1.fw(power=m1power) if self.state == 'fw' else self.m1.rw(power=m1power)
m1dir = 'fw' if self.state == 'fw' else 'rw'
# adjust m2 power to be at least twice the minimum combined power
m2power += max(0, self.minpower*2-(m1power+m2power))
self.m2.rw(power=m2power) if self.state == 'rw' else self.m2.fw(power=m2power)
m2dir = 'rw' if self.state == 'rw' else 'fw'
if self.verbose: print "left: %i%% | m1.%s: %i | m2.%s %i" % (steerpower,m1dir,m1power,m2dir,m2power)
else:
self.m1.rw(power=self.power); self.m2.fw(power=self.power)
m1power, m2power = self.power, self.power
# log motor
self.motorlog.append([time(),'left',m1power,m2power])
if seconds is not None:
sleep(seconds); self.stop()
def _right(self, seconds=None, steerpower=100):
if m1.use_pwm and m2.use_pwm:
# if the rover is not moving, rotating power is forced to 100
if self.state == 'stop': steerpower = 100; self.power = 100; self.state ='fw'
m1power = self.power
if steerpower >=50:
# STRONG TURN (inverted direction on motors)
m2power = ((steerpower-50)*2/100.)*self.power
m2power, m1power = max(m2power, 80), max(m1power, 80) # fixing low velocity turns
self.m2.fw(power=m2power) if self.state == 'rw' else self.m2.rw(power=m2power)
m2dir = 'fw' if self.state == 'rw' else 'rw'
else:
# LIGHT TURN (same direction, but slower motors)
m2power = ((50-steerpower)*2/100.)*self.power
self.m2.fw(power=m2power) if self.state == 'fw' else self.m2.rw(power=m2power)
m2dir = 'fw' if self.state == 'fw' else 'rw'
# adjust m2 power to be at least twice the minimum combined power
m1power += max(0, self.minpower*2-(m2power+m1power))
self.m1.fw(power=m1power) if self.state == 'fw' else self.m1.rw(power=m1power)
m1dir = 'fw' if self.state == 'fw' else 'rw'
if self.verbose: print "right: %i%% | m1.%s: %i | m2.%s %i" % (steerpower,m1dir,m1power,m2dir,m2power)
else:
self.m1.fw(power=self.power); self.m2.rw(power=self.power)
m1power, m2power = self.power, self.power
# log motor
self.motorlog.append([time(),'right',m1power,m2power])
if seconds is not None:
sleep(seconds); self.stop()
def distance(self):
if self.dist is not None:
return self.dist.measure()
else: return None
def print_distance(self):
dist = self.distance()[1]
if dist is None: print "Distance Measurement not initialized"
else: print "Distance: %.2fcm" % dist
# LOGGING
def init_log(self, seconds=3600, interval=0.010):
self.motorlog = []; self.imu.samples = [] # reset motor logger
self.stop() # stop car
self.imu.sampler(seconds, interval) # start reading accelerometer
def save_log(self, savepath=None):
self.stop()
acclog = self.imu.get_samples()
import pandas as pd
acclog = pd.DataFrame(acclog, columns=['time','pitch','roll','head','ax','ay','az','mx','my','mz','gx','gy','gz']).set_index('time')
carlog = pd.DataFrame(self.motorlog, columns=['time','action','m1','m2']).set_index('time')
carlog['seq'] = range(len(carlog))
data = pd.merge(acclog, carlog, how='outer', left_index=True, right_index=True)
# reset data with star date
data.index = data.index.values - data.index.values.min()
if savepath is not None:
if savepath == True: savepath = ''
data.to_csv(datetime.now().strftime(savepath+'carlog_%Y%m%d_%H%M%S.csv'))
return data
from motor import Motor
from camera import jib, s1, s2
from distance import dist
m1 = Motor('left',35,37,True)
m2 = Motor('left',38,40,True)
r = Rover(m1,m2, jib, dist, verbose=True)