-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path05_hypothesis_test.py
94 lines (59 loc) · 2.7 KB
/
05_hypothesis_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
exec(open("Utils.py").read(), globals())
exec(open("01_Importazione_dati_e_moduli.py").read(), globals())
exec(open('03_Descriptive.py').read(), globals())
##############################################
######### Test ipotesi v. risposta ###########
##############################################
# dati_risposta = pd.read_table('ccle_drug_response.txt', decimal = '.')
BMS_IC_50 = dati_risposta.ix[:, [2,4]].dropna()
# n1 = len(BMS_IC_50)
BMS_AUC = dati_risposta.ix[:, [2,5]].dropna()
# n2 = len(BMS_AUC)
Z_IC_50 = dati_risposta.ix[:, [2,6]].dropna()
# n3 = len(Z_IC_50)
Z_AUC = dati_risposta.ix[:, [2,7]].dropna()
# n4 = len(Z_AUC)
lista_dataset = [BMS_IC_50, BMS_AUC, Z_IC_50, Z_AUC]
# lista_num = [n1, n2, n3, n4]
tipo = list(set(dati_risposta.ix[:,2]))
#
lista_group = []
for data in lista_dataset:
lista = []
for i in tipo:
#print(i)
lista_corrente = []
for j in data.index:
#print(j)
if data.ix[j,0] == i:
lista_corrente.append(data.ix[j,1])
#
lista.append(lista_corrente)
lista_group.append(lista)
dataframe_null_type.to_csv("results/missing.csv", sep=';')
for lista in lista_group: # Correggere
f_val, p_val = stats.f_oneway(lista[0], lista[1], lista[2], lista[3],
lista[4], lista[5], lista[6], lista[7],
lista[8], lista[9], lista[10], lista[11],
lista[12])
print( f_val, p_val )
for lista in lista_group: # Correggere
f_val, p_val = stats.mstats.kruskalwallis(lista[0], lista[1], lista[2],
lista[3], lista[4], lista[5],
lista[6], lista[7], lista[8],
lista[9], lista[10], lista[11],
lista[12])
print( f_val, p_val )
##############################################################################
########################## CONFRONTI MULTIPLI ################################
##############################################################################
farmaci = [ "BMS_IC_50", "BMS_AUC", "Z_IC_50", "Z_AUC" ]
alpha_reale = 0.05/13
for k in range(0, len(lista_group)):
for i in range(0, len(lista_group[k])):
for j in range(i+1, len(lista_group[k])):
t_val, p_val = scipy.stats.ttest_ind(
lista_group[k][i], lista_group[k][j])
if(p_val < alpha_reale):
print("Variabile risposta: ", farmaci[k]," --> ", tipo[i],
"vs", tipo[j], ": p-value = ", p_val )