-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path15_Modeling_all_cell_line.py
188 lines (129 loc) · 5.48 KB
/
15_Modeling_all_cell_line.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# -*- coding: utf-8 -*-
"""
Created on Thu Apr 13 19:03:24 2017
@author: Antonio
"""
exec(open("Utils.py").read())
exec(open("01_Importazione_dati_e_moduli.py").read())
# exec(open('03_Descriptive.py').read())
# exec(open("05_hypothesis_test.py").read())
exec(open("10_PCA.py").read(), globals())
name_columns = ['Y', 'Numerosità', 'SE','SSE', 'MSE', 'Root_MSE', 'RSE','RRSE',
'MAE', 'RAE','Deviance', 'Variance', 'Modello' ]
###################################################################
##################### Linear Regression ###########################
###################################################################
model = skl.linear_model.LinearRegression()
result_regression = []
for i in range( 0, len(Y_array) ):
print(i)
# i=0
print(Y_array[i])
n = len( list_data[i])
regression = cross_validation(splits = n,
target_variable = Y_array[i],
explanatory_variable = list_data[i][X_matrix].columns,
data = list_data[i] )
risultati = [Y_array[i], n] + regression + ['reg_lin']
result_regression.append( risultati )
df_regression = pd.DataFrame(result_regression)
df_regression.columns = name_columns
df_regression
#
np.save("results/all_cell_line/all_cell_CL_regression.npy", df_regression)
# pd.DataFrame(df_regression).to_excel("results/CSV/Risultati_regression_all_CL.csv")
# np.load("results/all_cell_CL_regression.npy")
## from pandas import ExcelWriter
writer = ExcelWriter('results/Regressione_lineare_ALL.xlsx')
df_regression.to_excel(writer)
writer.save()
###################################################################
############### Support Verctor Machine ###########################
###################################################################
result_svm_list = []
for i in range( 0, len(Y_array) ) :
print( i )
print( Y_array[i] )
data = list_data[i]
parameters = {'kernel':('linear', 'poly', 'rbf', 'sigmoid'),
'C':[1,3,5,7,9,11,13,15,17,19],
'gamma': [0.01,0.03,0.04,0.1,0.2,0.4,0.6]}
svr = svm.SVR()
grid = GridSearchCV(svr, parameters, n_jobs = 2)
X_train = data[ explanatory_variable]
y_train = data[ Y_array[i] ]
print( "Scelta dei parametri \n")
start_time = time.time()
SVM = grid.fit( X_train, y_train )
print("--- %s seconds ---" % (time.time() - start_time),"\n\n")
print( grid.best_params_ ,"\n\n")
print("Stima del modello \n")
n = len( list_data[i])
result_svm = cross_validation(splits = 20,
target_variable = Y_array[i],
explanatory_variable = list_data[i][X_matrix].columns,
data = list_data[i],
model = SVM)
risultati = [Y_array[i], n] + result_svm +['SVM']
result_svm_list.append( risultati )
df_svm = pd.DataFrame(result_svm_list)
df_svm.columns = name_columns
df_svm
#
np.save("results/all_cell_line/all_cell_CL_svm.npy", df_svm)
writer = ExcelWriter('results/SVM_ALL.xlsx')
df_svm.to_excel(writer)
writer.save()
###################################################################
############### Neural Network MLP ################################
###################################################################
from sklearn.grid_search import GridSearchCV
# from sklearn import ae, mlp
import sklearn.neural_network as nn
#from sklearn.neural_network import Layer
result_mlp_list = []
for i in range( 0, len(Y_array) ) :
# i = 1
print( i )
print( Y_array[i] )
data = list_data[i]
parameters = {'learning_rate': ['constant', 'adaptive'],
'hidden_layer_sizes': [[64, 32, 16, 8, 4, 2],
[48, 36, 24, 12, 4],
[24, 12, 6, 3, 1],
[10, 5, 3],
[4, 2],
[2]],
'activation' : [#'identity',
'logistic'],
'max_iter': [60000] }
nn_reg = nn.MLPRegressor()
grid = GridSearchCV(nn_reg, param_grid = parameters, n_jobs = 3)
X_train = data[ explanatory_variable]
y_train = data[ Y_array[i] ]
print( "Scelta dei parametri Reti Neurali MLP \n")
start_time = time.time()
NeurNet = grid.fit( X_train, y_train)
print("--- %s seconds ---" % (time.time() - start_time),"\n\n")
print( NeurNet.best_params_ ,"\n\n")
print("Stima del modello \n")
n = len( list_data[i])
result_nn = cross_validation( splits = 20,
target_variable = Y_array[i],
explanatory_variable = list_data[i][X_matrix].columns,
data = list_data[i],
model = NeurNet)
risultati = [Y_array[i], n] + result_nn + ['MLP']
result_mlp_list.append( risultati )
# result_svm_list.append( result_svm )
df_nn = pd.DataFrame(result_mlp_list)
df_nn.columns = name_columns
df_nn
np.save("results/all_cell_line/all_cell_line_nn.npy", df_nn)
writer = ExcelWriter('results/MLP_ALL.xlsx')
df_nn.to_excel(writer)
writer.save()
#df = pd.concat([df_regression, df_svm, df_nn])
#writer = ExcelWriter('results/models_ALL.xlsx')
#df.to_excel(writer)
#writer.save()