-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUtils.py
193 lines (132 loc) · 4.97 KB
/
Utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# -*- coding: utf-8 -*-
"""
Created on Sat Apr 22 20:05:47 2017
@author: Antonio
"""
import numpy as np
import pandas as pd
import scipy.stats as stats
import scipy
from matplotlib import pyplot as plt
import matplotlib.pyplot as plt
import sklearn.neural_network as nn
import math
from pylab import *
import seaborn as sns
from sklearn import decomposition
from sklearn.decomposition import PCA
from sklearn.model_selection import GridSearchCV
from sklearn import svm
import sklearn as skl
from sklearn import cross_validation, linear_model
from sklearn.model_selection import KFold
from sklearn.pipeline import make_pipeline
import random
import time
from sklearn.linear_model import LassoCV
from sklearn.linear_model import RidgeCV
def create_dataset( data,
target_variable,
explanatory_variable
):
#
data = data.dropna(subset = [target_variable])
dataset = pd.concat([data[target_variable], data[ explanatory_variable ]], axis = 1)
return dataset
def model_estimation( data,
target_variable,
explanatory_variable,
test_data,
model = skl.linear_model.LinearRegression(),
):
data = data.dropna(subset = [target_variable])
fit = model.fit( data[explanatory_variable], data[target_variable] )
predict = model.predict( test_data[explanatory_variable] )
return predict
def cross_validation( data,
target_variable,
explanatory_variable,
model = skl.linear_model.LinearRegression(),
splits = 10
):
data = data.sample( n = len(data))
data = data.reset_index()
n = len( data )
kf = KFold( n_splits = splits )
Y_true = []
Y_hat = []
print("CROSS VALIDATION ...\n")
for train_idx, test_idx in kf.split( data ):
training_dataset = data.ix[ train_idx ]
test_dataset = data.ix[ test_idx ]
# print(len(test_dataset))
prediction = model_estimation(training_dataset,
target_variable,
explanatory_variable,
test_data = test_dataset,
model = model)
Y_hat.append( prediction)
Y_true.append(test_dataset[target_variable])
# ######################################################
# hat = pd.concat( pd.Series(Y_hat[i]) for i in range ( len(Y_hat ) ))
# true = pd.concat( pd.Series(Y_true[i]) for i in range ( len(Y_true ) ))
#
# np.corrcoef(hat, true)
differenza = []
for i in range( len(Y_hat)):
differenza.append( Y_true[i] - Y_hat[i] )
diff = []
diff = pd.concat( differenza[i]
for i in range( len( differenza)) )
diff_2 = []
diff_2 = np.power(diff, 2)
SSE = sum(diff_2)
MSE = SSE/n
Root_MSE = sqrt(MSE)
SE = np.sum(diff)
Y = []
Y = pd.concat( Y_true[j] for j in range( len( Y_true )))
Dev_Y = np.var( Y )*n
Var_Y = np.var( Y )
RSE = SSE/Dev_Y
RRSE = sqrt(RSE)
MAE = sum( abs(diff) )/n
differenza_media = []
media = np.mean(Y)
for i in range( len(Y_hat)):
differenza_media.append( Y_true[i] - media)
diff_media = []
diff_media = pd.concat( differenza_media[i]
for i in range( len( differenza_media)) )
RAE = sum( abs(diff) )/sum( abs(diff_media) )
return [SE, SSE, MSE, Root_MSE, RSE, RRSE, MAE, RAE, Dev_Y, Var_Y]
def plot_error (df,
ordinata,
ascissa,
Y_array,
group,
name_file):
types =['bs-', 'ro-','bs-', 'ro-']
colors = ['b', 'r', 'y', 'g']
for Y in Y_array :
for i in range( len(group)):
current_data = df.loc[( df['Y'] == Y ) & ( df['Modello'] == group[i] ),:]
corr = np.corrcoef( current_data[ascissa], current_data[ordinata])[0,1]
minimo = min(current_data[ordinata])
mod_min = current_data.loc[ current_data[ordinata] == minimo,'Modello']
c = colors[i]
t = types[i]
x = df.loc[( df['Y'] == Y ) & ( df['Modello'] == group[i] ), ascissa]
y = df.loc[( df['Y'] == Y ) & ( df['Modello'] == group[i] ), ordinata]
plt.plot(x , y, t , color = c, label = group[i])
# plt.figure( figsize = (2,2))
plt.title(Y)
plt.legend()
# plt.figtext(0.6, 0.3, s = [ mod_min, "{0:.4f}".format(minimo)] )
plt.ylabel(ordinata)
plt.xlabel(ascissa)
plt.legend()
path = 'results/no_PCA/'+ name_file + Y + '.png'
savefig(path, dpi = 500)
plt.show()
plt.close()