-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_adaptive_phases.py
271 lines (211 loc) · 12 KB
/
main_adaptive_phases.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import argparse
import random
import os
import torch
import numpy as np
import json
import nltk
from tqdm import tqdm
import copy
from sklearn.metrics import f1_score, confusion_matrix
from MetaICL.metaicl.data import MetaICLData
from MetaICL.metaicl.model import MetaICLModel
from get_task import get_task
from utils import calculate_sentence_transformer_embedding
from prompt_retrieval import prompt_retrieval
from annotation_methods import selective_annotation_adaptive_phases
parser = argparse.ArgumentParser()
parser.add_argument('--task_name', required=True,type=str)
parser.add_argument('--selective_annotation_method', required=True,type=str)
parser.add_argument('--model_cache_dir', required=True,type=str)
parser.add_argument('--data_cache_dir', required=True,type=str)
parser.add_argument('--output_dir', required=True,type=str)
parser.add_argument('--model_key', type=str)
parser.add_argument('--prompt_retrieval_method', default='similar',type=str)
parser.add_argument('--model_name', default='EleutherAI/gpt-j-6B',type=str)
parser.add_argument('--embedding_model', default='sentence-transformers/all-mpnet-base-v2',type=str)
parser.add_argument('--annotation_size', default=100,type=int)
parser.add_argument('--seed', default=0,type=int)
parser.add_argument('--batch_size', default=10,type=int)
parser.add_argument('--min_choose', default=10,type=int)
parser.add_argument('--max_choose', default=50,type=int)
parser.add_argument('--debug', action='store_true')
parser.add_argument('--annotation_path',default='first_phase_selected_indices',type=str)
parser.add_argument('--priority',default='diversity',type=str, choices=['diversity', 'difficulty', 'random'])
parser.add_argument('--fig_path',default='output',type=str)
parser.add_argument('--few_shot',default=5,type=int) #0 means we concat as much as possible
parser.add_argument('--steps',default=1,type=int)
parser.add_argument('--init',default='cluster',type=str, choices=['random', 'cluster'])
parser.add_argument('--trust',action='store_true')
parser.add_argument('--init_size',default=10,type=int)
parser.add_argument('--sample_k',action='store_true')
parser.add_argument('--evaluate_calibration',action='store_true')
parser.add_argument('--phases',default=2,type=int)
##Method
parser.add_argument('--ada_icl_plus',action='store_true')
###Graph
parser.add_argument('--k_graph',default=15,type=int)
parser.add_argument('--hard_limit',default=0.5,type=float)
parser.add_argument('--two_hop',action='store_true')
parser.add_argument('--thres_graph',action='store_true')
parser.add_argument('--mc_selection',default='hard',type=str, choices=['hard', 'hard_easy', 'easy'])
parser.add_argument('--do_inference',action='store_true')
args = parser.parse_args()
def set_seed(seed: int):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def postprocess_text(preds, labels):
preds = [pred.strip() for pred in preds]
labels = [label.strip() for label in labels]
preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]
return preds, labels
if __name__=='__main__':
set_seed(args.seed)
args.output_dir += f"/adaptive_phases_few_shot-{args.few_shot}-{args.phases}/{args.task_name}_lm-{args.model_name}_annotation-{args.selective_annotation_method}_budget-{args.annotation_size}_init-{args.init}-{args.sample_k}_seed{args.seed}"
if not os.path.isdir(args.output_dir):
os.makedirs(args.output_dir,exist_ok=True)
with open(os.path.join(args.output_dir,'result_summary.txt'), 'w') as f:
f.write(f"{args.output_dir}\n")
print("\n")
print("=====================")
print("DATASET: ", args.task_name)
print("Seed and method", args.seed, args.selective_annotation_method, args.init, args.annotation_size)
print("=====================")
print("\n")
train_examples,eval_examples,train_text_to_encode,eval_text_to_encode,format_example,label_map = get_task(args=args)
print("Embedding model: ", args.embedding_model)
# train_examples = eval_examples
# train_text_to_encode = eval_text_to_encode
total_train_embeds = calculate_sentence_transformer_embedding(text_to_encode=train_text_to_encode,
args=args)
total_eval_embeds = calculate_sentence_transformer_embedding(text_to_encode=eval_text_to_encode,
args=args)
output_dir_examples = os.path.join(args.output_dir,'examples')
if not os.path.isdir(output_dir_examples):
os.makedirs(output_dir_examples, exist_ok=True)
path = os.path.join(output_dir_examples, 'all_train_examples.json')
with open(path, 'w') as fout:
json.dump(train_examples, fout, indent=4)
path = os.path.join(output_dir_examples, 'all_eval_examples.json')
with open(path, 'w') as fout:
json.dump(eval_examples, fout, indent=4)
if args.task_name in ['mnli','rte','sst5','mrpc','dbpedia_14','hellaswag','ag_news', 'trec', 'amazon', 'ethos', 'sst2']:
if 'gpt' in args.model_name:
tokenizer_name = 'gpt2'
else:
tokenizer_name = args.model_name
data_module = MetaICLData(method="direct", max_length=1024, max_length_per_example=300, tokenizer_name=tokenizer_name)
print("Model using", args.model_name)
inference_model = MetaICLModel(args=args)
inference_model.load()
#inference_model.cuda()
inference_model.eval()
tokenizer_gpt = None
return_string = False
single_input_len = 250
maximum_input_len = 1000
predicted_eval_examples = []
path = os.path.join(output_dir_examples, args.selective_annotation_method+"_"+"B"+str(args.annotation_size)+'selected_train_examples.json')
if args.do_inference and os.path.isfile(os.path.join(args.output_dir, f"selected_indices_final.json")):
with open(os.path.join(args.output_dir, f"selected_indices_final.json")) as f:
all_phases_selected_indices = json.load(f)
print("reusing annotated data")
else:
print("new annotated data")
all_phases_selected_indices = selective_annotation_adaptive_phases(embeddings=total_train_embeds,
train_examples=train_examples,
return_string=return_string,
format_example=format_example,
maximum_input_len=maximum_input_len,
label_map=label_map,
single_context_example_len=single_input_len,
inference_model=inference_model,
inference_data_module=data_module,
tokenizer_gpt=tokenizer_gpt,
args=args)
with open(os.path.join(args.output_dir, f"selected_indices_final.json"),'w') as f:
json.dump(all_phases_selected_indices,f,indent=4)
processed_train_examples = [train_examples[idx] for idx in all_phases_selected_indices]
with open(path, 'w') as fout:
json.dump(processed_train_examples, fout, indent=4)
#print(le)
processed_train_examples = [train_examples[idx] for idx in all_phases_selected_indices]
processed_eval_examples = eval_examples
prompt_retrieval(train_embs=total_train_embeds[all_phases_selected_indices],test_embs=total_eval_embeds,train_examples=processed_train_examples,
eval_examples=processed_eval_examples,return_string=return_string,format_example=format_example,
maximum_input_len=maximum_input_len,single_context_example_len=single_input_len,label_map=label_map,args=args)
prompt_cache_dir = os.path.join(args.output_dir, 'prompts')
candidate_prompt_files = os.listdir(prompt_cache_dir)
prompt_files = [f for f in candidate_prompt_files if f.endswith('.json')]
assert len(prompt_files) == len(processed_eval_examples), f"len(prompt_files)={len(prompt_files)}," \
f"len(processed_eval_examples)={len(processed_eval_examples)}"
output_dir = os.path.join(args.output_dir,'results_final_test')
if not os.path.isdir(output_dir):
os.makedirs(output_dir, exist_ok=True)
count = 0
running_flag = True
golds = []
preds = []
scores = []
if not args.task_name in ['hellaswag','xsum','nq']:
all_labels = []
label_to_digit = {}
for k, v in label_map.items():
all_labels.append(v)
label_to_digit[v] = k
execution_count = 0
###Single evaluation
while running_flag:
running_flag = False
count += 1
bar = tqdm(range(len(prompt_files)), desc=f" LLM inference")
for file in prompt_files:
bar.update(1)
if args.task_name != 'hellaswag':
with open(os.path.join(prompt_cache_dir, file)) as f:
one_test_example = json.load(f)
cur_train_data = one_test_example[1]
for idx in range(len(cur_train_data)):
cur_train_data[idx]['options'] = all_labels
for idx in range(len(cur_train_data)):
cur_train_data[idx]['options'] = all_labels
cur_input = format_example(one_test_example[2], label_map=label_map, args=args)[0]
data_module.k = len(cur_train_data)
data_module.tensorize(cur_train_data, [cur_input], options=all_labels)
prediction = inference_model.do_predict(data_module, require_loss=True, do_probs=False)[0]
with open(os.path.join(output_dir, file), 'w') as f:
json.dump(prediction, f)
preds.append(label_to_digit[prediction[0]])
scores.append(prediction[1])
golds.append(one_test_example[2]['label'])
new_predicted_example = copy.deepcopy(one_test_example[2])
new_predicted_example["prediction"] = label_to_digit[prediction[0]]
new_predicted_example["score"] = prediction[1]
new_predicted_example["retrieved"] = one_test_example[1]
predicted_eval_examples.append(new_predicted_example)
path = os.path.join(output_dir_examples, args.model_name+'_'+args.selective_annotation_method+"_"+"B"+str(args.annotation_size)+'FS'+str(args.few_shot)+'_predictions_eval_examples.json')
with open(path, 'w') as fout:
json.dump(predicted_eval_examples, fout, indent=4)
results = []
assert len(golds) == len(preds), f"len(golds)={len(golds)}, len(preds)={len(preds)}"
total = len(golds)
correct = 0
for p, g in zip(golds, preds):
if p == g:
correct += 1
results.append(1)
else:
results.append(0)
with open(os.path.join(args.output_dir,'result_summary.txt'), 'a') as f:
f.write(f"{len(golds)} examples, accuracy is: {correct / total}\n")
if args.task_name == 'mrpc':
f1 = f1_score(golds,preds)
acc = correct / total
tn, fp, fn, tp = confusion_matrix(golds, preds).ravel()
specificity = tn / (tn+fp)
print(f'The f1 score, acc, and specificity are {f1} {acc} {specificity}\n')
else:
print(f'The accuracy score is {correct / total}\n')