-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsummarize.Rmd
100 lines (77 loc) · 2.83 KB
/
summarize.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---
title: "Summarize_verb"
author: "Amit"
date: "5/28/2018"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
## R Markdown
This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see <http://rmarkdown.rstudio.com>.
When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
```{r cars}
#step 1
library(ggplot2)
library(tidyverse)
library(gapminder)
```
## summarizing into multiple columns and finding mean life expectancy from the gapminder dataset
```{r pressure, echo=FALSE}
gapminder %>%
filter(year==2007) %>%
summarize(meanLifeExp=mean(lifeExp),totalPop=sum(pop))
```
## summarizing into multiple columns
finding median life expectancy from the gapminder dataset
You can also embed plots, for example:
```{r pressure, echo=FALSE}
gapminder %>%
filter(year==2007) %>%
summarize(medianLifeExp=median(lifeExp) ,totalPop=sum(pop))
# Filter for 1957 then summarize the median life expectancy and the maximum GDP per capita
gapminder %>%
filter(year==1957)%>%
summarize(medianLifeExp=median(lifeExp),maxGdpPercap=max(gdpPercap))
```
## summarizing into multiple columns
performing summary withing each year
```{r pressure, echo=FALSE}
# Find median life expectancy and maximum GDP per capita in each year
gapminder %>%
group_by(year) %>%
summarize(medianLifeExp = median(lifeExp),
maxGdpPercap = max(gdpPercap),maxpop=max(pop))
```
```{r pressure, echo=FALSE}
library(gapminder)
library(dplyr)
library(ggplot2)
# Find median life expectancy and maximum GDP per capita in each year/continent combination
gapminder %>%
group_by(continent,year) %>%
summarize(medianLifeExp = median(lifeExp),
maxGdpPercap = max(gdpPercap))
```
```{r pressure, echo=FALSE}
# Summarize medianGdpPercap within each continent within each year: by_year_continent
by_year_continent<-gapminder %>%
group_by(continent,year)%>%
summarize(medianGdpPercap=median(gdpPercap))
# Plot the change in medianGdpPercap in each continent over time
ggplot(by_year_continent,aes(x=year,y=medianGdpPercap,color=continent)) + geom_point() + expand_limits(y=0)
```
```{r pressure, echo=FALSE}
library(gapminder)
library(dplyr)
library(ggplot2)
# Summarize the median GDP and median life expectancy per continent in 2007
by_continent_2007 <- gapminder %>%
filter(year == 2007) %>%
group_by(continent) %>%
summarize(medianGdpPercap = median(gdpPercap),
medianLifeExp = median(lifeExp))
# Use a scatter plot to compare the median GDP and median life expectancy
ggplot(by_continent_2007, aes(x = medianGdpPercap, y = medianLifeExp, color = continent)) +
geom_point()
```