-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopenCV.py
171 lines (117 loc) · 4.41 KB
/
openCV.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from pyimagesearch.centroidtracker import CentroidTracker
from collections import deque
from imutils.video import VideoStream
import numpy as np
import argparse
import imutils
import time
import cv2
import serial
ser = serial.Serial('COM6', 115200)
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--prototxt", required=True,default='deploy.prototxt',
help="path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model", required=True,default='res10_300x300_ssd_iter_140000.caffemodel',
help="path to Caffe pre-trained model")
ap.add_argument("-c", "--confidence", type=float, default=0.5,
help="minimum probability to filter weak detections")
ap.add_argument("-b", "--buffer", type=int, default=32,
help="max buffer size")
args = vars(ap.parse_args())
ct = CentroidTracker()
(H, W) = (None, None)
pts = deque(maxlen=args["buffer"])
counter = 0
(dX, dY) = (0, 0)
direction = ""
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
print("[INFO] starting video stream...")
vs = VideoStream(src=1).start()
time.sleep(2.0)
while True:
frame = vs.read()
frame = imutils.resize(frame, width=400)
if W is None or H is None:
(H, W) = frame.shape[:2]
blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)),
0.007843, (300, 300), 127.5)
net.setInput(blob)
detections = net.forward()
rects = []
for i in range(0, detections.shape[2]):
if detections[0, 0, i, 2] > args['confidence']:
box = detections[0, 0, i, 3:7] * np.array([W, H, W, H])
rects.append(box.astype('int'))
(startX, startY, endX, endY) = box.astype('int')
cv2.rectangle(frame, (startX, startY), (endX, endY), (0,
0xFF, 0), 2)
objects = ct.update(rects)
for (objectID, centroid) in objects.items():
text = 'ID {}'.format(objectID)
cv2.putText(
frame,
text,
(centroid[0] - 10, centroid[1] - 10),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(0, 0xFF, 0),
2,
)
cv2.circle(frame, (centroid[0], centroid[1]), 4, (0, 0xFF, 0),
-1)
center = (centroid[0], centroid[1])
pts.appendleft(center)
for i in np.arange(1, len(pts)):
if pts[i - 1] is None or pts[i] is None:
continue
if counter >= 10 and i == 1 and pts[-10] is not None:
dX = pts[-10][0] - pts[i][0]
dY = pts[-10][1] - pts[i][1]
(dirX, dirY) = ('', '')
if np.abs(dX) > 20:
dirX = ('left' if np.sign(dX) == 1 else 'right')
if np.abs(dY) > 20:
dirY = ('up' if np.sign(dY) == 1 else 'down')
if dirX != '' and dirY != '':
direction = '{}-{}'.format(dirY, dirX)
else:
direction = (dirX if dirX != '' else dirY)
thickness = int(np.sqrt(args['buffer'] / float(i + 1)) * 2.5)
if direction =="left":
time.sleep(0.1)
ser.write(b'l')
if direction =="right":
time.sleep(0.1)
ser.write(b'r')
if direction =="up":
time.sleep(0.1)
ser.write(b'u')
if direction =="down":
time.sleep(0.1)
ser.write(b'd')
cv2.putText(
frame,
direction,
(10, 30),
cv2.FONT_HERSHEY_SIMPLEX,
0.65,
(0, 0, 0xFF),
3,
)
cv2.putText(
frame,
'dx: {}, dy: {}'.format(dX, dY),
(10, frame.shape[0] - 10),
cv2.FONT_HERSHEY_SIMPLEX,
0.35,
(0, 0, 0xFF),
1,
)
cv2.imshow('Frame', frame)
key = cv2.waitKey(1) & 0xFF
counter += 1
if key == ord("q"):
break
cv2.destroyAllWindows()
vs.stop()