-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcontinueTrain.py
executable file
·47 lines (39 loc) · 1.68 KB
/
continueTrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import os
import numpy as np
import pandas as pd
from keras import models, optimizers, backend
from keras.layers import core, convolutional, pooling
from sklearn import model_selection,utils
from dataPreprocessing import generate_samples, preprocess
if __name__ == '__main__':
# Read splitted data
df_train = pd.read_csv('train.csv')
df_valid = pd.read_csv('test.csv')
# CNN Model Architecture
model = models.Sequential()
model.add(convolutional.Convolution2D(16, 3, 3, input_shape=(32, 128, 3), activation='relu'))
model.add(pooling.MaxPooling2D(pool_size=(2, 2)))
model.add(convolutional.Convolution2D(32, 3, 3, activation='relu'))
model.add(pooling.MaxPooling2D(pool_size=(2, 2)))
model.add(convolutional.Convolution2D(64, 3, 3, activation='relu'))
model.add(pooling.MaxPooling2D(pool_size=(2, 2)))
model.add(core.Flatten())
model.add(core.Dense(500, activation='relu'))
model.add(core.Dropout(.5))
model.add(core.Dense(100, activation='relu'))
model.add(core.Dropout(.25))
model.add(core.Dense(20, activation='relu'))
model.add(core.Dense(1))
model.compile(optimizer=optimizers.Adam(lr=1e-04), loss='mean_squared_error')
# load the exist model
model.load_weights("model.h5")
history = model.fit_generator(# continue training model for 17 epochs
generate_samples(df_train, ''),
samples_per_epoch=df_train.shape[0],
nb_epoch=17,#0.016
validation_data=generate_samples(df_valid, '', augment=False),
nb_val_samples=df_valid.shape[0],
)
with open(os.path.join('', 'model.json'), 'w') as file: # save trained model
file.write(model.to_json())
backend.clear_session()