-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdisparity_map.py
213 lines (179 loc) · 7.76 KB
/
disparity_map.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt
# Read both images and convert to grayscale
img1 = cv.imread('left_img.png', cv.IMREAD_GRAYSCALE)
img2 = cv.imread('right_img.png', cv.IMREAD_GRAYSCALE)
# ------------------------------------------------------------
# PREPROCESSING
# Compare unprocessed images
fig, axes = plt.subplots(1, 2, figsize=(15, 10))
axes[0].imshow(img1, cmap="gray")
axes[1].imshow(img2, cmap="gray")
axes[0].axhline(250)
axes[1].axhline(250)
axes[0].axhline(450)
axes[1].axhline(450)
plt.suptitle("Original images")
plt.savefig("original_images.png")
plt.show()
# 1. Detect keypoints and their descriptors
# Based on: https://docs.opencv.org/master/dc/dc3/tutorial_py_matcher.html
# Initiate SIFT detector
sift = cv.SIFT_create()
# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(img1, None)
kp2, des2 = sift.detectAndCompute(img2, None)
# Visualize keypoints
imgSift = cv.drawKeypoints(
img1, kp1, None, flags=cv.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
cv.imshow("SIFT Keypoints", imgSift)
cv.imwrite("sift_keypoints.png", imgSift)
# Match keypoints in both images
# Based on: https://docs.opencv.org/master/dc/dc3/tutorial_py_matcher.html
FLANN_INDEX_KDTREE = 1
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50) # or pass empty dictionary
flann = cv.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1, des2, k=2)
# Keep good matches: calculate distinctive image features
# Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60, 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94
# https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
matchesMask = [[0, 0] for i in range(len(matches))]
good = []
pts1 = []
pts2 = []
for i, (m, n) in enumerate(matches):
if m.distance < 0.7*n.distance:
# Keep this keypoint pair
matchesMask[i] = [1, 0]
good.append(m)
pts2.append(kp2[m.trainIdx].pt)
pts1.append(kp1[m.queryIdx].pt)
# Draw the keypoint matches between both pictures
# Still based on: https://docs.opencv.org/master/dc/dc3/tutorial_py_matcher.html
draw_params = dict(matchColor=(0, 255, 0),
singlePointColor=(255, 0, 0),
matchesMask=matchesMask[300:500],
flags=cv.DrawMatchesFlags_DEFAULT)
keypoint_matches = cv.drawMatchesKnn(
img1, kp1, img2, kp2, matches[300:500], None, **draw_params)
cv.imshow("Keypoint matches", keypoint_matches)
cv.imwrite("keypoint_matches.png", keypoint_matches)
# ------------------------------------------------------------
# STEREO RECTIFICATION
# Calculate the fundamental matrix for the cameras
# https://docs.opencv.org/master/da/de9/tutorial_py_epipolar_geometry.html
pts1 = np.int32(pts1)
pts2 = np.int32(pts2)
fundamental_matrix, inliers = cv.findFundamentalMat(pts1, pts2, cv.FM_RANSAC)
# We select only inlier points
pts1 = pts1[inliers.ravel() == 1]
pts2 = pts2[inliers.ravel() == 1]
# Visualize epilines
# Adapted from: https://docs.opencv.org/master/da/de9/tutorial_py_epipolar_geometry.html
def drawlines(img1src, img2src, lines, pts1src, pts2src):
''' img1 - image on which we draw the epilines for the points in img2
lines - corresponding epilines '''
r, c = img1src.shape
img1color = cv.cvtColor(img1src, cv.COLOR_GRAY2BGR)
img2color = cv.cvtColor(img2src, cv.COLOR_GRAY2BGR)
# Edit: use the same random seed so that two images are comparable!
np.random.seed(0)
for r, pt1, pt2 in zip(lines, pts1src, pts2src):
color = tuple(np.random.randint(0, 255, 3).tolist())
x0, y0 = map(int, [0, -r[2]/r[1]])
x1, y1 = map(int, [c, -(r[2]+r[0]*c)/r[1]])
img1color = cv.line(img1color, (x0, y0), (x1, y1), color, 1)
img1color = cv.circle(img1color, tuple(pt1), 5, color, -1)
img2color = cv.circle(img2color, tuple(pt2), 5, color, -1)
return img1color, img2color
# Find epilines corresponding to points in right image (second image) and
# drawing its lines on left image
lines1 = cv.computeCorrespondEpilines(
pts2.reshape(-1, 1, 2), 2, fundamental_matrix)
lines1 = lines1.reshape(-1, 3)
img5, img6 = drawlines(img1, img2, lines1, pts1, pts2)
# Find epilines corresponding to points in left image (first image) and
# drawing its lines on right image
lines2 = cv.computeCorrespondEpilines(
pts1.reshape(-1, 1, 2), 1, fundamental_matrix)
lines2 = lines2.reshape(-1, 3)
img3, img4 = drawlines(img2, img1, lines2, pts2, pts1)
plt.subplot(121), plt.imshow(img5)
plt.subplot(122), plt.imshow(img3)
plt.suptitle("Epilines in both images")
plt.savefig("epilines.png")
plt.show()
# Stereo rectification (uncalibrated variant)
# Adapted from: https://stackoverflow.com/a/62607343
h1, w1 = img1.shape
h2, w2 = img2.shape
_, H1, H2 = cv.stereoRectifyUncalibrated(
np.float32(pts1), np.float32(pts2), fundamental_matrix, imgSize=(w1, h1)
)
# Rectify (undistort) the images and save them
# Adapted from: https://stackoverflow.com/a/62607343
img1_rectified = cv.warpPerspective(img1, H1, (w1, h1))
img2_rectified = cv.warpPerspective(img2, H2, (w2, h2))
cv.imwrite("rectified_1.png", img1_rectified)
cv.imwrite("rectified_2.png", img2_rectified)
# Draw the rectified images
fig, axes = plt.subplots(1, 2, figsize=(15, 10))
axes[0].imshow(img1_rectified, cmap="gray")
axes[1].imshow(img2_rectified, cmap="gray")
axes[0].axhline(250)
axes[1].axhline(250)
axes[0].axhline(450)
axes[1].axhline(450)
plt.suptitle("Rectified images")
plt.savefig("rectified_images.png")
plt.show()
# ------------------------------------------------------------
# CALCULATE DISPARITY (DEPTH MAP)
# Adapted from: https://github.com/opencv/opencv/blob/master/samples/python/stereo_match.py
# and: https://docs.opencv.org/master/dd/d53/tutorial_py_depthmap.html
# StereoSGBM Parameter explanations:
# https://docs.opencv.org/4.5.0/d2/d85/classcv_1_1StereoSGBM.html
# Matched block size. It must be an odd number >=1 . Normally, it should be somewhere in the 3..11 range.
block_size = 11
min_disp = -128
max_disp = 128
# Maximum disparity minus minimum disparity. The value is always greater than zero.
# In the current implementation, this parameter must be divisible by 16.
num_disp = max_disp - min_disp
# Margin in percentage by which the best (minimum) computed cost function value should "win" the second best value to consider the found match correct.
# Normally, a value within the 5-15 range is good enough
uniquenessRatio = 5
# Maximum size of smooth disparity regions to consider their noise speckles and invalidate.
# Set it to 0 to disable speckle filtering. Otherwise, set it somewhere in the 50-200 range.
speckleWindowSize = 200
# Maximum disparity variation within each connected component.
# If you do speckle filtering, set the parameter to a positive value, it will be implicitly multiplied by 16.
# Normally, 1 or 2 is good enough.
speckleRange = 2
disp12MaxDiff = 0
stereo = cv.StereoSGBM_create(
minDisparity=min_disp,
numDisparities=num_disp,
blockSize=block_size,
uniquenessRatio=uniquenessRatio,
speckleWindowSize=speckleWindowSize,
speckleRange=speckleRange,
disp12MaxDiff=disp12MaxDiff,
P1=8 * 1 * block_size * block_size,
P2=32 * 1 * block_size * block_size,
)
disparity_SGBM = stereo.compute(img1_rectified, img2_rectified)
plt.imshow(disparity_SGBM, cmap='plasma')
plt.colorbar()
plt.show()
# Normalize the values to a range from 0..255 for a grayscale image
disparity_SGBM = cv.normalize(disparity_SGBM, disparity_SGBM, alpha=255,
beta=0, norm_type=cv.NORM_MINMAX)
disparity_SGBM = np.uint8(disparity_SGBM)
cv.imshow("Disparity", disparity_SGBM)
cv.imwrite("disparity_SGBM_norm.png", disparity_SGBM)
cv.waitKey()
cv.destroyAllWindows()
# ---------------------------------------------------------------