-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
283 lines (222 loc) · 11.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Oct 10 15:15:51 2018
@author: Andrea
"""
from __future__ import print_function, division
from utils import load_dataset
from keras.layers import Input, Dense, Reshape, Flatten, Dropout, multiply, concatenate
from keras.layers import BatchNormalization, Activation, Embedding, ZeroPadding2D
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.models import Sequential, Model
from keras.optimizers import Adam
import cv2
import numpy as np
class Acgan():
def __init__(self,img_size, num_classes, create_new):
# Input shape
self.img_size = img_size #images are squared
self.channels = 3
self.img_shape = (self.img_size, self.img_size, self.channels)
self.num_classes = num_classes
self.latent_dim = 100
self.create_new = create_new
self.gen_history = []
self.label_history = []
optimizer = Adam(0.0002, 0.5)
losses = ['binary_crossentropy', 'sparse_categorical_crossentropy']
# Build and compile the discriminator
self.discriminator = self.build_discriminator()
self.discriminator.compile(loss=losses,
optimizer=optimizer,
metrics=['accuracy'])
# Build the generator
self.generator = self.build_generator()
# The generator takes noise and the target label as input
# and generates the corresponding digit of that label
noise = Input(shape=(self.latent_dim,))
label = Input(shape=(1,))
label_tensor = Input(shape=(self.img_size/2, self.img_size/2,
self.num_classes), dtype='float32')
img = self.generator([noise, label, label_tensor])
# For the combined model we will only train the generator
self.discriminator.trainable = False
# The discriminator takes generated image as input and determines validity
# and the label of that image
valid, target_label = self.discriminator(img)
# The combined model (stacked generator and discriminator)
# Trains the generator to fool the discriminator
self.combined = Model([noise, label, label_tensor], [valid, target_label])
self.combined.compile(loss=losses,
optimizer=optimizer)
def build_generator(self):
d1 = int(self.img_size / 8)
model = Sequential()
#first block (Dense)
model.add(Dense(256 * d1 * d1, input_dim=self.latent_dim, kernel_initializer = 'he_normal'))
model.add(BatchNormalization(momentum=0.8))
# model.add(Dropout(rate = 0.4) )
model.add(LeakyReLU(alpha=0.2))
model.add(Reshape((d1, d1, 256))) #size:(d1,d1,256)
#second block (Convolutional)
model.add(UpSampling2D(interpolation='bilinear')) #size: (2*d1,2*d1,256)
model.add(Conv2D(256, kernel_size=3, padding="same", kernel_initializer = 'he_normal'))
model.add(BatchNormalization(momentum=0.8))
# model.add(Dropout(rate = 0.4) )
model.add(LeakyReLU(alpha=0.2))
#third block (Convolutional and concatenation)
model.add(UpSampling2D(interpolation='bilinear')) #size: (4*d1,4*d1,256)
model2 = Sequential() #size: (4*d1,4*d1,256+num_classes)
model2.add(Conv2D(128, kernel_size=3, padding="same", #size: (4*d1,4*d1,128)
input_shape=(4*d1, 4*d1, 256+self.num_classes), kernel_initializer = 'he_normal' ))
model2.add(BatchNormalization(momentum=0.8))
model2.add(LeakyReLU(alpha=0.2))
#fourth block (Convolutional)
model2.add(UpSampling2D(interpolation='bilinear')) #size: (img_size,img_size,128)
model2.add(Conv2D(64, kernel_size=3, padding="same",
kernel_initializer = 'he_normal')) #size: (img_size,img_size,64)
model2.add(BatchNormalization(momentum=0.8))
model2.add(LeakyReLU(alpha=0.2))
#Convolutional layer + activation
model2.add(Conv2D(self.channels, kernel_size=3, padding='same')) #size: (img_size,img_size,3)
model2.add(Activation("tanh"))
model2.summary()
noise = Input(shape=(self.latent_dim,))
label = Input(shape=(1,), dtype='int32')
label_tensor = Input(shape=(4*d1,4*d1,self.num_classes), dtype='float32')
label_embedding = Flatten()(Embedding(self.num_classes, 100)(label))
model_input = multiply([noise, label_embedding])
r = model(model_input)
merged = concatenate([r, label_tensor])
img = model2(merged)
return Model([noise, label,label_tensor], img)
def build_discriminator(self):
model = Sequential()
model.add(Conv2D(16, kernel_size=3, strides=2, input_shape=self.img_shape, padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Conv2D(32, kernel_size=3, strides=2, padding="same"))
model.add(ZeroPadding2D(padding=((0,1),(0,1))))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv2D(64, kernel_size=3, strides=2, padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv2D(128, kernel_size=3, strides=1, padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Flatten())
model.summary()
img = Input(shape=self.img_shape)
# Extract feature representation
features = model(img)
# Determine validity and label of the image
validity = Dense(1, activation="sigmoid")(features)
label = Dense(self.num_classes, activation="softmax")(features)
return Model(img, [validity, label])
def train(self, epochs, batch_size, flip_img, roteate_img,
replay = True, sample_interval=50):
# Load the dataset
X_train, y_train,number_of_classes = load_dataset(self.img_size, self.create_new,
flip_img, roteate_img)
#Check the number of classes is right
if number_of_classes != self.num_classes:
raise ValueError("The number of classes found is "+ str(number_of_classes) +
" but the number of classes specified is "+ str(self.num_classes)+
"\n Maybe there was some empty folder?")
# Adversarial ground truths
valid_o = np.ones((batch_size, 1))
fake_o = np.zeros((batch_size, 1))
for epoch in range(epochs):
# Label smoothing:
valid = self.label_smoothing(valid_o)
fake = self.label_smoothing(fake_o)
# ---------------------
# Train Discriminator
# ---------------------
# Select a random batch of images
idx = np.random.randint(0, X_train.shape[0], batch_size)
imgs = X_train[idx]
# Sample noise as generator input
noise = np.random.normal(0, 1, (batch_size, 100))
# The labels of the digits that the generator tries to create an
# image representation of
sampled_labels = np.random.randint(0, self.num_classes, (batch_size, 1))
label_tensor = self.get_label_tensor(sampled_labels, batch_size)
# Generate a half batch of new images
gen_imgs = self.generator.predict([noise, sampled_labels,label_tensor])
# Replay:
if replay:
if epoch> 100 and epoch % 10:
self.gen_history.append(gen_imgs[0])
self.label_history.append(sampled_labels[0])
if epoch> 200:
gen_imgs, sampled_labels = self.add_replays(gen_imgs, sampled_labels)
label_tensor = self.get_label_tensor(sampled_labels, batch_size)
# Image labels. 0-9
img_labels = y_train[idx]
# Train the discriminator
d_loss_real = self.discriminator.train_on_batch(imgs, [valid, img_labels])
d_loss_fake = self.discriminator.train_on_batch(gen_imgs, [fake, sampled_labels])
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
# ---------------------
# Train Generator
# ---------------------
# Train the generator
g_loss = self.combined.train_on_batch([noise, sampled_labels, label_tensor], [valid, sampled_labels])
# Plot the progress
print ("%d [D loss: %f, acc.: %.2f%%, op_acc: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[3], 100*d_loss[4], g_loss[0]))
# If at save interval => save generated image samples
if epoch % sample_interval == 0:
self.save_model()
self.sample_images(epoch, batch_size)
def sample_images(self, epoch, batch_size, class_img = 0): #TODO: Change 4 batch
noise = np.random.normal(0, 1, (1, 100))
sampled_labels = np.array([class_img])
label_tensor = self.get_label_tensor(sampled_labels, 1)
gen_imgs = self.generator.predict([noise, sampled_labels, label_tensor])
# Rescale image to 0 - 255
gen_imgs = 255 * (0.5 * gen_imgs + 0.5)
gen_imgs = gen_imgs.astype(np.int64)
cv2.imwrite("images/"+str(epoch)+".jpg",gen_imgs[0] )
def save_model(self):
def save(model, model_name):
model_path = "saved_model/%s.json" % model_name
weights_path = "saved_model/%s_weights.hdf5" % model_name
options = {"file_arch": model_path,
"file_weight": weights_path}
json_string = model.to_json()
open(options['file_arch'], 'w').write(json_string)
model.save_weights(options['file_weight'])
save(self.generator, "generator")
save(self.discriminator, "discriminator")
def label_smoothing(self, vector, max_dev = 0.2):
d = max_dev * np.random.rand(vector.shape[0],vector.shape[1])
if vector[0][0] == 0:
return vector + d
else:
return vector - d
def add_replays(self, gen_imgs, sampled_labels, proportion = 0.3) :
"""
Substitute randomly a portion of the newly generated images with some
older (generated) ones
"""
n = int(gen_imgs.shape[0] * proportion)
n = min(n, len(self.label_history) )
idx_gen = np.random.randint(0, gen_imgs.shape[0], n)
idx_hist= np.random.randint(0, len(self.gen_history), n)
for i_g, i_h in zip(idx_gen, idx_hist) :
gen_imgs[i_g] = self.gen_history[i_h]
sampled_labels[i_g] = self.label_history[i_h]
return gen_imgs, sampled_labels
def get_label_tensor(self, label, batch_size):
shape =(batch_size, int(self.img_size/2), int(self.img_size/2), self.num_classes)
t = np.zeros(shape= shape, dtype='float32')
for i in range(batch_size):
idx = int( label[i])
t[i,:,:,idx] = 1
return t