-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathatac2.cpp
116 lines (102 loc) · 2.71 KB
/
atac2.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
# include <cstdio>
# include <algorithm>
# include <vector>
# include <queue>
# include <cstring>
# define NR 10005
# define NR2 205
# define inf 999999999
# define mp make_pair
using namespace std;
vector <int> v[NR], F[NR2];
vector <pair <int, int> > HEAP;
queue <int> q;
int i,j,n,m,x,y,S,D,VV,U,X,nod,sol,nrV;
int flux[NR2][NR2], cap[NR2][NR2], dist[NR], T[NR2], oras[NR2], cost[NR2][NR2];
void Djikstra (int K) {
int i,cact,k,urm;
for (i=1; i<=n; ++i) dist[i]=inf;
dist[K]=0;
HEAP.push_back(mp(0, K));
push_heap (HEAP.begin(), HEAP.end());
while (HEAP.size()) {
cact=-HEAP[0].first; k=HEAP[0].second;
pop_heap(HEAP.begin(), HEAP.end());
HEAP.pop_back();
if (cact > dist[k]) continue;
for (int i=0; i<v[k].size(); ++i) {
urm=v[k][i];
if (dist[urm] > dist[k] + 1) {
dist[urm]=dist[k]+1;
HEAP.push_back(mp(-dist[urm], urm));
push_heap(HEAP.begin(), HEAP.end());
}
}
}
}
bool BFS () {
int i,k,urm;
for (i=1; i<=200; ++i)
T[i]=-1, dist[i]=inf;
q.push(S); dist[S]=0;
while (! q.empty()) {
k=q.front(); q.pop();
for (i=0; i<F[k].size(); ++i) {
urm=F[k][i];
if (cap[k][urm]>flux[k][urm] && dist[urm]>dist[k]+cost[k][urm]) {
dist[urm]=dist[k] + cost[k][urm];
T[urm]=k;
q.push(urm);
}
}
}
if (T[D]==-1) return 0;
else return 1;
}
int main ()
{
freopen ("atac2.in", "r", stdin);
freopen ("atac2.out", "w", stdout);
scanf ("%d%d%d%d", &n, &m, &U, &X);
for (i=1; i<=U; ++i)
scanf ("%d", &oras[i]);
for (i=1; i<=m; ++i) {
scanf ("%d%d", &x, &y);
v[x].push_back(y);
v[y].push_back(x);
}
S=0; D=200;
for (i=0; i<v[X].size(); ++i) {
Djikstra (v[X][i]); nrV=U+i+1;
cap[nrV][D]=1;
F[nrV].push_back(D);
F[D].push_back(nrV);
for (j=1; j<=U; ++j) {
cap[j][nrV]=1;
F[j].push_back(nrV);
F[nrV].push_back(j);
cost[j][nrV]=dist[oras[j]];
cost[nrV][j]=-dist[oras[j]];
}
}
// S -> U
for (i=1; i<=U; ++i) {
cap[S][i]=1;
F[S].push_back(i);
F[i].push_back(S);
/*for (j=1; j<=U+v[X].size(); ++j)
printf ("%d ", cost[i][j]);
printf ("\n");*/
}
memset (dist, 0, sizeof(dist));
// facem cuplajul maxim de cost minim
while (BFS ()) {
for (nod=D; nod!=S; nod=T[nod]) {
flux[T[nod]][nod]++;
flux[nod][T[nod]]--;
}
sol+=dist[D];
}
printf ("%d\n", sol);
return 0;
}