-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmypath.py
50 lines (34 loc) · 1.63 KB
/
mypath.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import glob
import os
def get_path_train(img_shape, forest_attr="spec", backbone="3d"):
train_dir = "data/data_train"
if "3d" in backbone:
folder = f"data_{forest_attr}_{img_shape[0]}b_{img_shape[1]}d_{img_shape[2]}x{img_shape[2]}"
elif "2d" in backbone:
folder = f"data_{forest_attr}_{img_shape[0]}d_{img_shape[1]}x{img_shape[2]}"
# Configure your path to training set here
train_img_dir = f"{train_dir}/{folder}/train/image/"
train_mask_dir = f"{train_dir}/{folder}/train/mask/"
val_img_dir = f"{train_dir}/{folder}/val/image/"
val_mask_dir = f"{train_dir}/{folder}/val/mask/"
return train_img_dir, train_mask_dir, val_img_dir, val_mask_dir
def get_path_infer(infer_obj, args):
region = infer_obj.region
forest_attr = infer_obj.forest_attr
acc = infer_obj.acc
backbone = infer_obj.backbone
n_clusters = args.n_clusters
# Configure your path to reclassion dataset here
s2_img_dir = f"D:/co2_data/DL/large_img/sentinel/s2_{region}_recls/l2"
map_dir = f"data/{forest_attr}_map"
low_res_dir = os.path.join(map_dir, region, "low_res")
high_res_dir = os.path.join(map_dir, region, "high_res")
if not os.path.isdir(low_res_dir):
os.makedirs(low_res_dir)
if not os.path.isdir(high_res_dir):
os.makedirs(high_res_dir)
low_res_name = f"{region}_{forest_attr}_{backbone}_{acc}"
low_res_tif = os.path.join(low_res_dir, f"{low_res_name}.tif")
high_res_tif = os.path.join(high_res_dir, f"{low_res_name}_km{n_clusters}.tif")
input_s2_tifs = glob.glob(os.path.join(s2_img_dir, "*.tif"))
return low_res_tif, input_s2_tifs, high_res_tif