-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathalexnet.py
40 lines (36 loc) · 1.81 KB
/
alexnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.layers.normalization import BatchNormalization
from keras.optimizers import SGD
#AlexNet with batch normalization in Keras
#input image is 224x224
def alexnet():
model = Sequential()
model.add(Convolution2D(96, 7, 7, subsample=(1,1),input_shape=(3,64,64),border_mode='valid'))
model.add(BatchNormalization(epsilon=1e-06, mode=0, axis=1, momentum=0.9))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(3, 3),strides=tuple([1,1])))
model.add(Convolution2D(128, 7, 7, subsample=(1,1),border_mode='valid'))
model.add(BatchNormalization(epsilon=1e-06, mode=0, axis=1, momentum=0.9))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(3, 3),strides=tuple([1,1])))
model.add(Convolution2D(192,3, 3, subsample=(1,1),border_mode='valid'))
model.add(BatchNormalization(epsilon=1e-06, mode=0, axis=1, momentum=0.9))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(3, 3),strides=tuple([1,1])))
#model.add(Convolution2D(256, 3, 3, border_mode='valid'))
#model.add(BatchNormalization(epsilon=1e-06, mode=0, axis=1, momentum=0.9))
#model.add(Activation('relu'))
#model.add(MaxPooling2D(pool_size=(3, 3)))
model.add(Flatten())
model.add(Dense(4096))
model.add(BatchNormalization(epsilon=1e-06, mode=0, axis=1, momentum=0.9))
model.add(Activation('relu'))
model.add(Dense(4096))
model.add(BatchNormalization(epsilon=1e-06, mode=0, axis=1, momentum=0.9))
model.add(Activation('relu'))
model.add(Dense(200))
model.add(BatchNormalization(epsilon=1e-06, mode=0, axis=1, momentum=0.9))
model.add(Activation('softmax'))
return model