-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathmain.py
executable file
·379 lines (243 loc) · 11.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
#!/usr/bin/env python
"""
Author: Anshul Paigwar
email: [email protected]
"""
from __future__ import print_function
import argparse
import os
import shutil
import time
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
from modules import recurrent_attention_Loss
from model import AttentionalPointnet
from kitti_custom.kitti_LidarImg_data_provider_v2 import get_data_loaders
from tools.utils import save_checkpoint, AverageMeter, binary_accuracy, percent_overlap, bbox_iou
use_cuda = torch.cuda.is_available()
if use_cuda:
print('setting gpu on gpu_id: 0') #TODO: find the actual gpu id being used
parser = argparse.ArgumentParser()
# specify data and datapath
parser.add_argument('--lr', '--learning_rate', default=0.01, type=float, help='initial learning rate')
parser.add_argument('--print-freq', '-p', default=50, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('-s', '--save_checkpoints', dest='save_checkpoints', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--epochs', default=120, type=int,
help='number of total epochs to run')
parser.add_argument('--num_glimpses', default=6, type=int,help='number of total epochs to run')
parser.add_argument('--start_epoch', default=0, type=int, help='number epochs to start from')
parser.add_argument('--clip', type=float, default=0.25, help='gradient clipping')
args = parser.parse_args()
data_dir = "/home/anshul/iros_2019/attentional_pointnet/my_dataset/corrected_data/"
train_loader, valid_loader = get_data_loaders(data_dir)
model = AttentionalPointnet(N = 4096)
if use_cuda:
model.cuda()
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, weight_decay=0.0005)
criterion = recurrent_attention_Loss().cuda()
seq_len = 3 # for training we keep the sequence length 1 more the maximum number of the objects in one cropped region
def train(epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for batch_idx, (data, img_data, labels) in enumerate(train_loader):
data_time.update(time.time() - end) # measure data loading time
B = data.shape[0] # Batch size
N = data.shape[1] # Num of points in PointCloud
data, labels, img_data = data.float(), labels.float(), img_data.float()
if use_cuda:
labels, data, img_data = labels.cuda(), data.cuda(), img_data.cuda()
img_data = img_data.unsqueeze(1)
hidden = torch.zeros(1,B,512).cuda() # initialising the hidden variable for GRU
optimizer.zero_grad()
output = model(data, img_data, hidden, seq_len) # (B,4)
loss = criterion(output, labels, seq_len)
loss.backward()
optimizer.step()
# `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
hidden = hidden.detach()
losses.update(loss.item(), B)
pred = output[0]
prec1 = binary_accuracy(pred[0], labels[:,0,8])
top1.update(prec1, B)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if batch_idx % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
epoch, batch_idx, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1))
return losses.avg
def validate():
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
TP = torch.zeros(0) # True Positives
CS = torch.zeros(0) # Cosine Similarity
# switch to evaluate mode
model.eval()
# if args.evaluate:
# model.train()
with torch.no_grad():
end = time.time()
for batch_idx, (data, img_data, labels) in enumerate(valid_loader):
B = data.shape[0] # Batch size
N = data.shape[1] # Num of points in PointCloud
data, labels, img_data = data.float(), labels.float(), img_data.float()
# labels = labels.permute(1,0,2) #(seq,B,5)
if use_cuda:
labels, data, img_data = labels.cuda(), data.cuda(), img_data.cuda()
img_data = img_data.unsqueeze(1)
hidden = torch.zeros(1,B,512).cuda() # initialising the hidden variable for GRU
optimizer.zero_grad()
output = model(data, img_data, hidden, seq_len) # (B,4)
loss = criterion(output, labels, seq_len)
# `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
hidden = hidden.detach()
losses.update(loss.item(), B)
pred = output[0]
prec1 = binary_accuracy(pred[1], labels[:,1,8])
top1.update(prec1, B)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
###################################### Final Evaluation ####################################################
score_seq, loc_seq, box_seq = output
trans_mat_1 = torch.eye(3).view(1,-1).repeat(seq_len,B,1).cuda()
trans_mat_1[:,:,0] = loc_seq[:,:,0] # c
trans_mat_1[:,:,1] = -loc_seq[:,:,1] # -s
trans_mat_1[:,:,3] = loc_seq[:,:,1] # s
trans_mat_1[:,:,4] = loc_seq[:,:,0] # c
trans_mat_1[:,:,2] = loc_seq[:,:,2] #tx
trans_mat_1[:,:,5] = loc_seq[:,:,3] #ty
trans_mat_1 = trans_mat_1.view(seq_len*B,3,3)
trans_mat_2 = torch.eye(3).view(1,-1).repeat(seq_len,B,1).cuda()
trans_mat_2[:,:,0] = box_seq[:,:,0] # c
trans_mat_2[:,:,1] = -box_seq[:,:,1] # -s
trans_mat_2[:,:,3] = box_seq[:,:,1] # s
trans_mat_2[:,:,4] = box_seq[:,:,0] # c
trans_mat_2[:,:,2] = box_seq[:,:,2] #tx
trans_mat_2[:,:,5] = box_seq[:,:,3] #ty
trans_mat_2 = trans_mat_2.view(seq_len*B,3,3)
resultant_trans = torch.bmm(trans_mat_1, trans_mat_2)
resultant_trans = resultant_trans.view(seq_len,B, 9)
final_trans_params = resultant_trans[:,:,[0,3,2,5]]
z = (loc_seq[:,:,4] + box_seq[:,:,4]).view(seq_len,B,-1)
final_trans_params = torch.cat((final_trans_params,z),2)
loc = final_trans_params[:,:,2:5]
theta = torch.atan2(final_trans_params[:,:,1], final_trans_params[:,:,0])
size = box_seq[:,:,5:]
for a in range(B):
car_list = check_for_car(labels[a])
detections = []
for i in range(seq_len):
trans_params = torch.cat((loc[i,a], theta[i,a].view(1), size[i,a]),0)
if((score_seq[i,a] > 0.7)):
detections.append(trans_params.cpu().numpy())
TP_region, CS_region = eval_detect_in_region(car_list, detections)
TP = torch.cat((TP,TP_region),0)
CS = torch.cat((CS,CS_region),0)
if batch_idx % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'.format(
batch_idx, len(valid_loader), batch_time=batch_time, loss=losses,
top1=top1))
print(' * Prec@1 {top1.avg:.3f}'
.format(top1=top1))
if(TP.nelement() == 0):
recall = 0
else:
recall = TP.mean()
if(CS.nelement() == 0):
AOS = 0
else:
AOS = CS.mean()
print("recall: ", recall)
print("AOS: ", AOS)
return losses.avg, recall, AOS
best_recall = 0
def main():
# rospy.init_node('pcl2_pub_example', anonymous=True)
global args, best_recall
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_recall = checkpoint['best_recall']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
if args.evaluate:
validate()
return
for epoch in range(args.start_epoch, args.epochs):
# pdb.set_trace()
# adjust_learning_rate(optimizer, epoch)
loss_t = train(epoch)
# evaluate on validation set
loss_v, recall, AOS = validate()
with open("convergence.txt", "a") as myfile:
myfile.write("{},{},{},{},{}".format(epoch, loss_t, loss_v, recall, AOS)+"\n")
if (epoch > 40):
args.lr = 0.001
if (epoch > 80):
args.lr = 0.0001
if (args.save_checkpoints):
# remember best prec@1 and save checkpoint
is_best = recall > best_recall
best_recall = max(recall, best_recall)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_recall': best_recall,
'optimizer' : optimizer.state_dict(),
}, is_best)
def check_for_car(label):
label = label.cpu().numpy()
car_list = []
for loc in label:
if (loc[8] == 1):
car_list.append([loc[0] , loc[1], loc[2], loc[3], loc[5], loc[6],loc[7]])
return car_list
def eval_detect_in_region(car_list, detections):
num_cars = len(car_list)
num_detect = len(detections)
TP_region = torch.zeros(num_cars)
CS_region = torch.zeros(num_detect)
for i in range(num_cars):
for j in range(num_detect):
# IoU = bbox_iou(car_list[i],detections[j])
IoU, overlap = percent_overlap(car_list[i],detections[j])
if(overlap >= 0.7):
TP_region[i] = 1
CS_region[j] = (1+math.cos(car_list[i][3] - detections[j][3]))/2.0
return TP_region,CS_region
if __name__ == '__main__':
main()