-
Notifications
You must be signed in to change notification settings - Fork 142
/
Copy pathMaxwell2D_PMSynchronousMotor.py
768 lines (640 loc) · 31.8 KB
/
Maxwell2D_PMSynchronousMotor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
"""
Maxwell 2D: PM synchronous motor transient analysis
---------------------------------------------------
This example shows how you can use PyAEDT to create a Maxwell 2D transient analysis for
an interior permanent magnet electric motor.
"""
#################################################################################
# Perform required imports
# ~~~~~~~~~~~~~~~~~~~~~~~~
# Perform required imports.
from math import sqrt as mysqrt
import csv
import os
import pyaedt
##########################################################
# Set AEDT version
# ~~~~~~~~~~~~~~~~
# Set AEDT version.
aedt_version = "2024.1"
#################################################################################
# Initialize Maxwell 2D
# ~~~~~~~~~~~~~~~~~~~~~
# Initialize Maxwell 2D, providing the version, path to the project, and the design
# name and type.
setup_name = "MySetupAuto"
solver = "TransientXY"
project_name = pyaedt.generate_unique_project_name()
design_name = "Sinusoidal"
#################################################################################
# Initialize definitions for stator, rotor, and shaft
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Initialize geometry parameter definitions for the stator, rotor, and shaft.
# The naming refers to RMxprt primitives.
geom_params = {
"DiaGap": "132mm",
"DiaStatorYoke": "198mm",
"DiaStatorInner": "132mm",
"DiaRotorLam": "130mm",
"DiaShaft": "44.45mm",
"DiaOuter": "198mm",
"Airgap": "1mm",
"SlotNumber": "48",
"SlotType": "3"
}
#################################################################################
# Initialize definitions for stator windings
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Initialize geometry parameter definitions for the stator windings. The naming
# refers to RMxprt primitives.
wind_params = {
"Layers": "1",
"ParallelPaths": "2",
"R_Phase": "7.5mOhm",
"WdgExt_F": "5mm",
"SpanExt": "30mm",
"SegAngle": "0.25",
"CoilPitch": "5", # coil pitch in slots
"Coil_SetBack": "3.605732823mm",
"SlotWidth": "2.814mm", # RMxprt Bs0
"Coil_Edge_Short": "3.769235435mm",
"Coil_Edge_Long": "15.37828521mm"
}
#################################################################################
# Initialize definitions for model setup
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Initialize geometry parameter definitions for the model setup.
mod_params = {
"NumPoles": "8",
"Model_Length": "80mm",
"SymmetryFactor": "8",
"Magnetic_Axial_Length": "150mm",
"Stator_Lam_Length": "0mm",
"StatorSkewAngle": "0deg",
"NumTorquePointsPerCycle": "30",
"mapping_angle": "0.125*4deg",
"num_m": "16",
"Section_Angle": "360deg/SymmetryFactor"
}
#################################################################################
# Initialize definitions for operational machine
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Initialize geometry parameter definitions for the operational machine. This
# identifies the operating point for the transient setup.
oper_params = {
"InitialPositionMD": "180deg/4",
"IPeak": "480A",
"MachineRPM": "3000rpm",
"ElectricFrequency": "MachineRPM/60rpm*NumPoles/2*1Hz",
"ElectricPeriod": "1/ElectricFrequency",
"BandTicksinModel": "360deg/NumPoles/mapping_angle",
"TimeStep": "ElectricPeriod/(2*BandTicksinModel)",
"StopTime": "ElectricPeriod",
"Theta_i": "135deg"
}
##########################################################
# Set non-graphical mode
# ~~~~~~~~~~~~~~~~~~~~~~
# Set non-graphical mode. ``"PYAEDT_NON_GRAPHICAL"`` is needed to
# generate documentation only.
# You can set ``non_graphical`` either to ``True`` or ``False``.
non_graphical = False
##########################################################
# Launch Maxwell 2D
# ~~~~~~~~~~~~~~~~~
# Launch Maxwell 2D and save the project.
M2D = pyaedt.Maxwell2d(projectname=project_name,
specified_version=aedt_version,
designname=design_name,
solution_type=solver,
new_desktop_session=True,
non_graphical=non_graphical
)
##########################################################
# Create object to access 2D modeler
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Create the object ``mod2D`` to access the 2D modeler easily.
mod2D = M2D.modeler
mod2D.delete()
mod2D.model_units = "mm"
##########################################################
# Define variables from dictionaries
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Define design variables from the created dictionaries.
for k, v in geom_params.items():
M2D[k] = v
for k, v in wind_params.items():
M2D[k] = v
for k, v in mod_params.items():
M2D[k] = v
for k, v in oper_params.items():
M2D[k] = v
##########################################################
# Define path for non-linear material properties
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Define the path for non-linear material properties.
# Materials are stored in text files.
filename_lam, filename_PM = pyaedt.downloads.download_leaf()
##########################################################
# Create first material
# ~~~~~~~~~~~~~~~~~~~~~
# Create the material ``"Copper (Annealed)_65C"``.
mat_coils = M2D.materials.add_material("Copper (Annealed)_65C")
mat_coils.update()
mat_coils.conductivity = "49288048.9198"
mat_coils.permeability = "1"
##########################################################
# Create second material
# ~~~~~~~~~~~~~~~~~~~~~~
# Create the material ``"Arnold_Magnetics_N30UH_80C"``.
# The BH curve is read from a tabbed CSV file, and a list (``BH_List_PM``)
# is created. This list is passed to the ``mat_PM.permeability.value``
# method.
mat_PM = M2D.materials.add_material("Arnold_Magnetics_N30UH_80C_new")
mat_PM.update()
mat_PM.conductivity = "555555.5556"
mat_PM.set_magnetic_coercivity(value=-800146.66287534, x=1, y=0, z=0)
mat_PM.mass_density = "7500"
BH_List_PM = []
with open(filename_PM) as f:
reader = csv.reader(f, delimiter='\t')
next(reader)
for row in reader:
BH_List_PM.append([float(row[0]), float(row[1])])
mat_PM.permeability.value = BH_List_PM
##########################################################
# Create third material
# ~~~~~~~~~~~~~~~~~~~~~
# Create the laminated material ``30DH_20C_smooth``.
# This material has a BH curve and a core loss model,
# which is set to electrical steel.
mat_lam = M2D.materials.add_material("30DH_20C_smooth")
mat_lam.update()
mat_lam.conductivity = "1694915.25424"
kh = 71.7180985413
kc = 0.25092214579
ke = 12.1625774023
kdc = 0.001
eq_depth = 0.001
mat_lam.set_electrical_steel_coreloss(kh, kc, ke, kdc, eq_depth)
mat_lam.mass_density = "7650"
BH_List_lam = []
with open(filename_lam) as f:
reader = csv.reader(f, delimiter='\t')
next(reader)
for row in reader:
BH_List_lam.append([float(row[0]), float(row[1])])
mat_lam.permeability.value = BH_List_lam
##########################################################
# Create geometry for stator
# ~~~~~~~~~~~~~~~~~~~~~~~~~~
# Create the geometry for the stator. It is created via
# the RMxprt user-defined primitive. A list of lists is
# created with the proper UDP parameters.
udp_par_list_stator = [["DiaGap", "DiaGap"], ["DiaYoke", "DiaStatorYoke"], ["Length", "Stator_Lam_Length"],
["Skew", "StatorSkewAngle"], ["Slots", "SlotNumber"], ["SlotType", "SlotType"],
["Hs0", "1.2mm"], ["Hs01", "0mm"], ["Hs1", "0.4834227384999mm"],
["Hs2", "17.287669825502mm"],
["Bs0", "2.814mm"], ["Bs1", "4.71154109036mm"], ["Bs2", "6.9777285790998mm"], ["Rs", "2mm"],
["FilletType", "1"], ["HalfSlot", "0"], ["VentHoles", "0"], ["HoleDiaIn", "0mm"],
["HoleDiaOut", "0mm"],
["HoleLocIn", "0mm"], ["HoleLocOut", "0mm"], ["VentDucts", "0"], ["DuctWidth", "0mm"],
["DuctPitch", "0mm"],
["SegAngle", "0deg"], ["LenRegion", "Model_Length"], ["InfoCore", "0"]]
stator_id = mod2D.create_udp(udp_dll_name="RMxprt/VentSlotCore.dll",
udp_parameters_list=udp_par_list_stator, upd_library='syslib',
name='my_stator') # name not taken
##########################################################
# Assign properties to stator
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Assign properties to the stator. The following code assigns
# the material, name, color, and ``solve_inside`` properties.
M2D.assign_material(obj=stator_id, mat="30DH_20C_smooth")
stator_id.name = "Stator"
stator_id.color = (0, 0, 255) # rgb
stator_id.solve_inside = True # to be reassigned: M2D.assign material puts False if not dielectric
#####################################################################################
# Create geometry for PMs
# ~~~~~~~~~~~~~~~~~~~~~~~
# Create the geometry for the PMs (permanent magnets). In Maxwell 2D, you assign
# magnetization via the coordinate system. Because each PM needs to have a coordinate
# system in the face center, auxiliary functions are created. Here, you use the auxiliary
# function ``find_elements(lst1, lst2)`` to find the elements in list ``lst1`` with indexes
# in list ``lst2``.
def find_elements(lst1, lst2):
return [lst1[i] for i in lst2]
#####################################################################################
# Find largest elements in list
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Use the auxiliary function ``find_n_largest (input_len_list, n_largest_edges)``
# to find the ``n`` largest elements in the list ``input_len_list``.
def find_n_largest(input_len_list, n_largest_edges):
tmp = list(input_len_list)
copied = list(input_len_list)
copied.sort() # sort list so that largest elements are on the far right
index_list = []
for n in range(1, n_largest_edges + 1): # get index of the nth largest element
index_list.append(tmp.index(copied[-n]))
tmp[tmp.index(copied[-n])] = 0 # index can only get the first occurrence that solves the problem
return index_list
#####################################################################################
# Create coordinate system for PMs
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Create the coordinate system for the PMs. The inputs are the object name, coordinate
# system name, and inner or outer magnetization. Find the two longest edges of the magnets
# and get the midpoint of the outer edge. You must have this point to create the face
# coordinate systems in case of outer magnetization.
def create_cs_magnets(pm_id, cs_name, point_direction):
pm_face_id = mod2D.get_object_faces(pm_id.name)[0] # works with name only
pm_edges = mod2D.get_object_edges(pm_id.name) # gets the edges of the PM object
edge_len_list = list(
map(mod2D.get_edge_length, pm_edges)) # apply method get_edge_length to all elements of list pm_edges
index_2_longest = find_n_largest(edge_len_list, 2) # find the 2 longest edges of the PM
longest_edge_list = find_elements(pm_edges, index_2_longest)
edge_center_list = list(map(mod2D.get_edge_midpoint,
longest_edge_list)) # apply method get_edge_midpoint to all elements of list longest_edge_list
rad = lambda x: mysqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2])
index_largest_r = find_n_largest(list(map(rad, edge_center_list)), 2)
longest_edge_list2 = [longest_edge_list[i] for i in index_largest_r] # reorder: outer first element of the list
if point_direction == 'outer':
my_axis_pos = longest_edge_list2[0]
elif point_direction == 'inner':
my_axis_pos = longest_edge_list2[1]
mod2D.create_face_coordinate_system(face=pm_face_id, origin=pm_face_id, axis_position=my_axis_pos,
axis="X", name=cs_name)
pm_id.part_coordinate_system = cs_name
mod2D.set_working_coordinate_system('Global')
#####################################################################################
# Create outer and inner PMs
# ~~~~~~~~~~~~~~~~~~~~~~~~~~
# Create the outer and inner PMs and assign color to them.
IM1_points = [[56.70957112, 3.104886585, 0], [40.25081875, 16.67243502, 0], [38.59701538, 14.66621111, 0],
[55.05576774, 1.098662669, 0]]
OM1_points = [[54.37758185, 22.52393189, 0], [59.69688156, 9.68200639, 0], [63.26490432, 11.15992981, 0],
[57.94560461, 24.00185531, 0]]
IPM1_id = mod2D.create_polyline(position_list=IM1_points, cover_surface=True, name="PM_I1",
matname="Arnold_Magnetics_N30UH_80C_new")
IPM1_id.color = (0, 128, 64)
OPM1_id = mod2D.create_polyline(position_list=OM1_points, cover_surface=True, name="PM_O1",
matname="Arnold_Magnetics_N30UH_80C_new")
OPM1_id.color = (0, 128, 64)
#####################################################################################
# Create coordinate system for PMs in face center
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Create the coordinate system for PMs in the face center.
create_cs_magnets(IPM1_id, 'CS_' + IPM1_id.name, 'outer')
create_cs_magnets(OPM1_id, 'CS_' + OPM1_id.name, 'outer')
#####################################################################################
# Duplicate and mirror PMs
# ~~~~~~~~~~~~~~~~~~~~~~~~
# Duplicate and mirror the PMs along with the local coordinate system.
mod2D.duplicate_and_mirror([IPM1_id, OPM1_id], position=[0, 0, 0],
vector=["cos((360deg/SymmetryFactor/2)+90deg)", "sin((360deg/SymmetryFactor/2)+90deg)", 0])
id_PMs = mod2D.get_objects_w_string("PM", case_sensitive=True)
##########################################################
# Create coils
# ~~~~~~~~~~~~
# Create the coils.
coil_id = mod2D.create_rectangle(position=['DiaRotorLam/2+Airgap+Coil_SetBack', '-Coil_Edge_Short/2', 0],
dimension_list=['Coil_Edge_Long', 'Coil_Edge_Short', 0],
name='Coil', matname="Copper (Annealed)_65C")
coil_id.color = (255, 128, 0)
M2D.modeler.rotate(objid=coil_id, cs_axis="Z", angle="360deg/SlotNumber/2")
coil_id.duplicate_around_axis(cs_axis="Z", angle="360deg/SlotNumber", nclones='CoilPitch+1',
create_new_objects=True)
id_coils = mod2D.get_objects_w_string("Coil", case_sensitive=True)
##########################################################
# Create shaft and region
# ~~~~~~~~~~~~~~~~~~~~~~~
# Create the shaft and region.
region_id = mod2D.create_circle(position=[0, 0, 0], radius='DiaOuter/2',
num_sides='SegAngle', is_covered=True, name='Region')
shaft_id = mod2D.create_circle(position=[0, 0, 0], radius='DiaShaft/2',
num_sides='SegAngle', is_covered=True, name='Shaft')
##########################################################
# Create bands
# ~~~~~~~~~~~~
# Create the inner band, band, and outer band.
bandIN_id = mod2D.create_circle(position=[0, 0, 0], radius='(DiaGap - (1.5 * Airgap))/2',
num_sides='mapping_angle', is_covered=True, name='Inner_Band')
bandMID_id = mod2D.create_circle(position=[0, 0, 0], radius='(DiaGap - (1.0 * Airgap))/2',
num_sides='mapping_angle', is_covered=True, name='Band')
bandOUT_id = mod2D.create_circle(position=[0, 0, 0], radius='(DiaGap - (0.5 * Airgap))/2',
num_sides='mapping_angle', is_covered=True, name='Outer_Band')
##########################################################
# Assign motion setup to object
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Assign a motion setup to a ``Band`` object named ``RotatingBand_mid``.
M2D.assign_rotate_motion(band_object='Band', coordinate_system="Global", axis="Z", positive_movement=True,
start_position="InitialPositionMD", angular_velocity="MachineRPM")
##########################################################
# Create list of vacuum objects
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Create a list of vacuum objects and assign color.
vacuum_obj_id = [shaft_id, region_id, bandIN_id, bandMID_id, bandOUT_id] # put shaft first
for item in vacuum_obj_id:
item.color = (128, 255, 255)
##########################################################
# Create rotor
# ~~~~~~~~~~~~
# Create the rotor. Holes are specific to the lamination.
# Allocated PMs are created.
rotor_id = mod2D.create_circle(position=[0, 0, 0], radius='DiaRotorLam/2',
num_sides=0, name="Rotor", matname="30DH_20C_smooth")
rotor_id.color = (0, 128, 255)
mod2D.subtract(rotor_id, shaft_id, keep_originals=True)
void_small_1_id = mod2D.create_circle(position=[62, 0, 0], radius="2.55mm",
num_sides=0, name="void1", matname="vacuum")
M2D.modeler.duplicate_around_axis(void_small_1_id, cs_axis="Z", angle="360deg/SymmetryFactor",
nclones=2, create_new_objects=False)
void_big_1_id = mod2D.create_circle(position=[29.5643, 12.234389332712, 0], radius='9.88mm/2',
num_sides=0, name="void_big", matname="vacuum")
mod2D.subtract(rotor_id, [void_small_1_id, void_big_1_id], keep_originals=False)
slot_IM1_points = [[37.5302872, 15.54555396, 0], [55.05576774, 1.098662669, 0], [57.33637589, 1.25, 0],
[57.28982158, 2.626565019, 0], [40.25081875, 16.67243502, 0]]
slot_OM1_points = [[54.37758185, 22.52393189, 0], [59.69688156, 9.68200639, 0], [63.53825619, 10.5, 0],
[57.94560461, 24.00185531, 0]]
slot_IM_id = mod2D.create_polyline(position_list=slot_IM1_points, cover_surface=True, name="slot_IM1",
matname="vacuum")
slot_OM_id = mod2D.create_polyline(position_list=slot_OM1_points, cover_surface=True, name="slot_OM1",
matname="vacuum")
M2D.modeler.duplicate_and_mirror(objid=[slot_IM_id, slot_OM_id], position=[0, 0, 0],
vector=["cos((360deg/SymmetryFactor/2)+90deg)",
"sin((360deg/SymmetryFactor/2)+90deg)", 0])
id_holes = mod2D.get_objects_w_string("slot_", case_sensitive=True)
M2D.modeler.subtract(rotor_id, id_holes, keep_originals=True)
##########################################################
# Create section of machine
# ~~~~~~~~~~~~~~~~~~~~~~~~~
# Create a section of the machine. This allows you to take
# advantage of symmetries.
object_list = [stator_id, rotor_id] + vacuum_obj_id
mod2D.create_coordinate_system(origin=[0, 0, 0],
reference_cs="Global",
name="Section",
mode="axis",
x_pointing=["cos(360deg/SymmetryFactor)", "sin(360deg/SymmetryFactor)", 0],
y_pointing=["-sin(360deg/SymmetryFactor)", "cos(360deg/SymmetryFactor)", 0])
mod2D.set_working_coordinate_system("Section")
mod2D.split(object_list, "ZX", sides="NegativeOnly")
mod2D.set_working_coordinate_system("Global")
mod2D.split(object_list, "ZX", sides="PositiveOnly")
##########################################################
# Create boundary conditions
# ~~~~~~~~~~~~~~~~~~~~~~~~~~
# Create independent and dependent boundary conditions.
# Edges for assignment are picked by position.
# The points for edge picking are in the airgap.
pos_1 = "((DiaGap - (1.0 * Airgap))/4)"
id_bc_1 = mod2D.get_edgeid_from_position(position=[pos_1, 0, 0], obj_name='Region')
id_bc_2 = mod2D.get_edgeid_from_position(
position=[pos_1 + "*cos((360deg/SymmetryFactor))", pos_1 + "*sin((360deg/SymmetryFactor))", 0],
obj_name='Region')
M2D.assign_master_slave(master_edge=id_bc_1, slave_edge=id_bc_2,
reverse_master=False,
reverse_slave=True,
same_as_master=False,
bound_name="Matching")
##########################################################
# Assign vector potential
# ~~~~~~~~~~~~~~~~~~~~~~~
# Assign a vector potential of ``0`` to the second position.
pos_2 = "(DiaOuter/2)"
id_bc_az = mod2D.get_edgeid_from_position(
position=[pos_2 + "*cos((360deg/SymmetryFactor/2))", pos_2 + "*sin((360deg/SymmetryFactor)/2)", 0],
obj_name='Region')
M2D.assign_vector_potential(id_bc_az, vectorvalue=0, bound_name="VectorPotentialZero")
##########################################################
# Create excitations
# ~~~~~~~~~~~~~~~~~~
# Create excitations, defining phase currents for the windings.
PhA_current = "IPeak * cos(2*pi*ElectricFrequency*time+Theta_i)"
PhB_current = "IPeak * cos(2*pi * ElectricFrequency*time - 120deg+Theta_i)"
PhC_current = "IPeak * cos(2*pi * ElectricFrequency*time - 240deg+Theta_i)"
##########################################################
# Define windings in phase A
# ~~~~~~~~~~~~~~~~~~~~~~~~~~
# Define windings in phase A.
M2D.assign_coil(input_object=["Coil"], conductor_number=6, polarity="Positive", name="CT_Ph1_P2_C1_Go")
M2D.assign_coil(input_object=["Coil_5"], conductor_number=6, polarity="Negative", name="CT_Ph1_P2_C1_Ret")
M2D.assign_winding(coil_terminals=None, winding_type="Current", is_solid=False,
current_value=PhA_current, parallel_branches=1, name="Phase_A")
M2D.add_winding_coils(windingname="Phase_A", coil_names=["CT_Ph1_P2_C1_Go", "CT_Ph1_P2_C1_Ret"])
##########################################################
# Define windings in phase B
# ~~~~~~~~~~~~~~~~~~~~~~~~~~
# Define windings in phase B.
M2D.assign_coil(input_object="Coil_3", conductor_number=6, polarity="Positive", name="CT_Ph3_P1_C2_Go")
M2D.assign_coil(input_object="Coil_4", conductor_number=6, polarity="Positive", name="CT_Ph3_P1_C1_Go")
M2D.assign_winding(coil_terminals=None, winding_type="Current", is_solid=False,
current_value=PhB_current, parallel_branches=1,
name="Phase_B")
M2D.add_winding_coils(windingname="Phase_B", coil_names=["CT_Ph3_P1_C2_Go", "CT_Ph3_P1_C1_Go"])
##########################################################
# Define windings in phase C
# ~~~~~~~~~~~~~~~~~~~~~~~~~~
# Define windings in phase C.
M2D.assign_coil(input_object="Coil_1", conductor_number=6, polarity="Negative", name="CT_Ph2_P2_C2_Ret")
M2D.assign_coil(input_object="Coil_2", conductor_number=6, polarity="Negative", name="CT_Ph2_P2_C1_Ret")
M2D.assign_winding(coil_terminals=None, winding_type="Current", is_solid=False,
current_value=PhC_current, parallel_branches=1,
name="Phase_C")
M2D.add_winding_coils(windingname="Phase_C", coil_names=["CT_Ph2_P2_C2_Ret", "CT_Ph2_P2_C1_Ret"])
##########################################################
# Assign total current on PMs
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Assign a total current of ``0`` on the PMs.
PM_list = id_PMs
for item in PM_list:
M2D.assign_current(item, amplitude=0, solid=True, name=item + "_I0")
##########################################################
# Create mesh operations
# ~~~~~~~~~~~~~~~~~~~~~~
# Create the mesh operations.
M2D.mesh.assign_length_mesh(id_coils, isinside=True, maxlength=3, maxel=None, meshop_name="coils")
M2D.mesh.assign_length_mesh(stator_id, isinside=True, maxlength=3, maxel=None, meshop_name="stator")
M2D.mesh.assign_length_mesh(rotor_id, isinside=True, maxlength=3, maxel=None, meshop_name="rotor")
##########################################################
# Turn on eddy effects
# ~~~~~~~~~~~~~~~~~~~~
# Turn on eddy effects.
# M2D.eddy_effects_on(eddy_effects_list,activate_eddy_effects=True, activate_displacement_current=False)
##########################################################
# Turn on core loss
# ~~~~~~~~~~~~~~~~~
# Turn on core loss.
core_loss_list = ['Rotor', 'Stator']
M2D.set_core_losses(core_loss_list)
##########################################################
# Compute transient inductance
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Compute the transient inductance.
M2D.change_inductance_computation(compute_transient_inductance=True, incremental_matrix=False)
##########################################################
# Set model depth
# ~~~~~~~~~~~~~~~
# Set the model depth.
M2D.model_depth = "Magnetic_Axial_Length"
##########################################################
# Set symmetry factor
# ~~~~~~~~~~~~~~~~~~~
# Set the symmetry factor.
M2D.change_symmetry_multiplier("SymmetryFactor")
##########################################################
# Create setup and validate
# ~~~~~~~~~~~~~~~~~~~~~~~~~
# Create the setup and validate it.
setup = M2D.create_setup(setupname=setup_name)
setup.props["StopTime"] = "StopTime"
setup.props["TimeStep"] = "TimeStep"
setup.props["SaveFieldsType"] = "None"
setup.props["OutputPerObjectCoreLoss"] = True
setup.props["OutputPerObjectSolidLoss"] = True
setup.props["OutputError"] = True
setup.update()
M2D.validate_simple()
model = M2D.plot(show=False)
model.plot(os.path.join(M2D.working_directory, "Image.jpg"))
#################################################################################
# Initialize definitions for output variables
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Initialize the definitions for the output variables.
# These will be used later to generate reports.
output_vars = {
"Current_A": "InputCurrent(Phase_A)",
"Current_B": "InputCurrent(Phase_B)",
"Current_C": "InputCurrent(Phase_C)",
"Flux_A": "FluxLinkage(Phase_A)",
"Flux_B": "FluxLinkage(Phase_B)",
"Flux_C": "FluxLinkage(Phase_C)",
"pos": "(Moving1.Position -InitialPositionMD) *NumPoles/2",
"cos0": "cos(pos)",
"cos1": "cos(pos-2*PI/3)",
"cos2": "cos(pos-4*PI/3)",
"sin0": "sin(pos)",
"sin1": "sin(pos-2*PI/3)",
"sin2": "sin(pos-4*PI/3)",
"Flux_d": "2/3*(Flux_A*cos0+Flux_B*cos1+Flux_C*cos2)",
"Flux_q": "-2/3*(Flux_A*sin0+Flux_B*sin1+Flux_C*sin2)",
"I_d": "2/3*(Current_A*cos0 + Current_B*cos1 + Current_C*cos2)",
"I_q": "-2/3*(Current_A*sin0 + Current_B*sin1 + Current_C*sin2)",
"Irms": "sqrt(I_d^2+I_q^2)/sqrt(2)",
"ArmatureOhmicLoss_DC": "Irms^2*R_phase",
"Lad": "L(Phase_A,Phase_A)*cos0 + L(Phase_A,Phase_B)*cos1 + L(Phase_A,Phase_C)*cos2",
"Laq": "L(Phase_A,Phase_A)*sin0 + L(Phase_A,Phase_B)*sin1 + L(Phase_A,Phase_C)*sin2",
"Lbd": "L(Phase_B,Phase_A)*cos0 + L(Phase_B,Phase_B)*cos1 + L(Phase_B,Phase_C)*cos2",
"Lbq": "L(Phase_B,Phase_A)*sin0 + L(Phase_B,Phase_B)*sin1 + L(Phase_B,Phase_C)*sin2",
"Lcd": "L(Phase_C,Phase_A)*cos0 + L(Phase_C,Phase_B)*cos1 + L(Phase_C,Phase_C)*cos2",
"Lcq": "L(Phase_C,Phase_A)*sin0 + L(Phase_C,Phase_B)*sin1 + L(Phase_C,Phase_C)*sin2",
"L_d": "(Lad*cos0 + Lbd*cos1 + Lcd*cos2) * 2/3",
"L_q": "(Laq*sin0 + Lbq*sin1 + Lcq*sin2) * 2/3",
"OutputPower": "Moving1.Speed*Moving1.Torque",
"Ui_A": "InducedVoltage(Phase_A)",
"Ui_B": "InducedVoltage(Phase_B)",
"Ui_C": "InducedVoltage(Phase_C)",
"Ui_d": "2/3*(Ui_A*cos0 + Ui_B*cos1 + Ui_C*cos2)",
"Ui_q": "-2/3*(Ui_A*sin0 + Ui_B*sin1 + Ui_C*sin2)",
"U_A": "Ui_A+R_Phase*Current_A",
"U_B": "Ui_B+R_Phase*Current_B",
"U_C": "Ui_C+R_Phase*Current_C",
"U_d": "2/3*(U_A*cos0 + U_B*cos1 + U_C*cos2)",
"U_q": "-2/3*(U_A*sin0 + U_B*sin1 + U_C*sin2)"
}
##########################################################
# Create output variables for postprocessing
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Create output variables for postprocessing.
for k, v in output_vars.items():
M2D.create_output_variable(k, v)
#################################################################################
# Initialize definition for postprocessing plots
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Initialize the definition for postprocessing plots.
post_params = {
"Moving1.Torque": "TorquePlots"
}
#################################################################################
# Initialize definition for postprocessing multiplots
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Initialize the definition for postprocessing multiplots.
post_params_multiplot = { # reports
("U_A", "U_B", "U_C", "Ui_A", "Ui_B", "Ui_C"): "PhaseVoltages",
("CoreLoss", "SolidLoss", "ArmatureOhmicLoss_DC"): "Losses",
("InputCurrent(Phase_A)", "InputCurrent(Phase_B)", "InputCurrent(Phase_C)"): "PhaseCurrents",
("FluxLinkage(Phase_A)", "FluxLinkage(Phase_B)", "FluxLinkage(Phase_C)"): "PhaseFluxes",
("I_d", "I_q"): "Currents_dq",
("Flux_d", "Flux_q"): "Fluxes_dq",
("Ui_d", "Ui_q"): "InducedVoltages_dq",
("U_d", "U_q"): "Voltages_dq",
("L(Phase_A,Phase_A)", "L(Phase_B,Phase_B)", "L(Phase_C,Phase_C)", "L(Phase_A,Phase_B)", "L(Phase_A,Phase_C)",
"L(Phase_B,Phase_C)"): "PhaseInductances",
("L_d", "L_q"): "Inductances_dq",
("CoreLoss", "CoreLoss(Stator)", "CoreLoss(Rotor)"): "CoreLosses",
("EddyCurrentLoss", "EddyCurrentLoss(Stator)", "EddyCurrentLoss(Rotor)"): "EddyCurrentLosses (Core)",
("ExcessLoss", "ExcessLoss(Stator)", "ExcessLoss(Rotor)"): "ExcessLosses (Core)",
("HysteresisLoss", "HysteresisLoss(Stator)", "HysteresisLoss(Rotor)"): "HysteresisLosses (Core)",
("SolidLoss", "SolidLoss(IPM1)", "SolidLoss(IPM1_1)", "SolidLoss(OPM1)", "SolidLoss(OPM1_1)"): "SolidLoss"
}
##########################################################
# Create report
# ~~~~~~~~~~~~~
# Create a report.
for k, v in post_params.items():
M2D.post.create_report(expressions=k, setup_sweep_name="", domain="Sweep", variations=None,
primary_sweep_variable="Time", secondary_sweep_variable=None,
report_category=None, plot_type="Rectangular Plot", context=None, subdesign_id=None,
polyline_points=1001, plotname=v)
##########################################################
# Create multiplot report
# ~~~~~~~~~~~~~~~~~~~~~~~
# Create a multiplot report.
# for k, v in post_params_multiplot.items():
# M2D.post.create_report(expressions=list(k), setup_sweep_name="", domain="Sweep", variations=None,
# primary_sweep_variable="Time", secondary_sweep_variable=None,
# report_category=None, plot_type="Rectangular Plot", context=None, subdesign_id=None,
# polyline_points=1001, plotname=v)
##########################################################
# Analyze and save project
# ~~~~~~~~~~~~~~~~~~~~~~~~
# Analyze and save the project.
M2D.save_project()
M2D.analyze_setup(setup_name, use_auto_settings=False)
##########################################################
# Create flux lines plot on region
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Create a flux lines plot on a region. The ``object_list`` is
# formerly created when the section is applied.
faces_reg = mod2D.get_object_faces(object_list[1].name) # Region
plot1 = M2D.post.create_fieldplot_surface(objlist=faces_reg, quantityName='Flux_Lines', intrinsic_dict={
"Time": M2D.variable_manager.variables["StopTime"].evaluated_value}, plot_name="Flux_Lines")
##########################################################
# Export a field plot to an image file
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Export the flux lines plot to an image file using Python PyVista.
M2D.post.plot_field_from_fieldplot(plot1.name, show=False)
###############################################
# Get solution data
# ~~~~~~~~~~~~~~~~~
# Get a simulation result from a solved setup and cast it in a ``SolutionData`` object.
# Plot the desired expression by using Matplotlib plot().
solutions = M2D.post.get_solution_data(expressions="Moving1.Torque",
primary_sweep_variable="Time")
#solutions.plot()
###############################################
# Retrieve the data magnitude of an expression
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# List of shaft torque points and compute average.
mag = solutions.data_magnitude()
avg = sum(mag) / len(mag)
###############################################
# Export a report to a file
# ~~~~~~~~~~~~~~~~~~~~~~~~~
# Export a 2D Plot data to a .csv file.
M2D.post.export_report_to_file(output_dir=M2D.toolkit_directory,
plot_name="TorquePlots",
extension=".csv")
###############################################
# Close AEDT
# ~~~~~~~~~~
# Close AEDT.
M2D.release_desktop()