-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathxml2dict.py
246 lines (207 loc) · 10.7 KB
/
xml2dict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
'''
xml2dict.py
- Converting termbase export file (MultitermXML) to dict for use in LexTermEval.py
- converting tags and adding missing tags
- exporting converted termbase with tags as "TB_full.pkl", also in lemmatised version "TB_full_lemmatised.pkl"
- exporting converted termbase without tags (id-termsIT-termsDE) for matching as "TB_m.pkl", also in lemmatised version
"TB_m_lemmatised.pkl"
Format of "TB_full.pkl":
Dictionary with key = Bistro entry ID and value = bi-tuple of it-de,
with it-de each a dictionary with key=term and value = a tuple of (status termine, status Bistro Ita) for italian
and ([Sprachgebrauch], Termstatus, status Bistro DE) for German. If attribute not present, assign "NA" for now
Ex.:
{
'28629': ({'immunità di gregge': ('NA', 'NA'),
'immunità di comunità': ('NA', 'NA'),
'immunità di gruppo': ('NA', 'NA')},
{'Herdenimmunität': (['Südtirol', 'AT', 'DE', 'CH'], 'CNS', 'NA'),
'Herdenschutz': (['Südtirol', 'AT', 'DE', 'CH'], 'CNS', 'NA')})
}
'''
from lxml import etree
import pickle
import treetaggerwrapper
termbaseExport = r"C:\Users\anton\Documents\Documenti importanti\Eurac\tirocinio avanzato per tesi 2021\esporti Bluterm\esporto_Bistro_da_Bistrolocale13k.xml" # path to MultiTerm export file (filtered with only needed tags)
blacklist = ( # set of IDs of terms to not be added to final termbase
"14678", # Sinn = senso
)
# creating TreeTagger instances
tagger_it = treetaggerwrapper.TreeTagger(TAGLANG="it")
tagger_de = treetaggerwrapper.TreeTagger(TAGLANG="de")
def lemmatise(text, lang):
if lang == "it":
tagger = tagger_it
elif lang == "de":
tagger = tagger_de
tags = tagger.tag_text(text)
mytags = treetaggerwrapper.make_tags(tags, exclude_nottags=True)
lemma_list = []
for tag in mytags:
lemma = tag.lemma
if lemma == "essere|stare" or (lemma == "essere" and len(text.split(" ")) == 1):
try:
lemma = tag.word # reverting to wordform instead of lemma
#print("Correcting lemmatisation error: ", tag.lemma, "->", tag.word)
except AttributeError:
# if NoTag, ignore
continue
try:
lemma_list.append(lemma)
except AttributeError:
# if NoTag, ignore
continue
return " ".join(lemma_list)
tree = etree.parse(termbaseExport) # parsing the XML file
root = tree.getroot()
body = root.find("mtf")
# building termbase data structure
termBase = {}
# counters for stats about the tb used for evaluation
counter_noAA = 0
counter_standardised_AA = 0
counter_italian_terms = 0
counter_AA_terms = 0
counter_german_terms = 0
for conceptGrp in root.iter("conceptGrp"): # iterating over each concept in the TB
ID = conceptGrp.find("concept").text # getting concept ID from the <concept> child element
if ID in blacklist:
continue # discarding blacklisted terms
languageGrp = conceptGrp.findall("languageGrp")
languageGrpIT = languageGrp[0] # the first language is Italian
languageGrpDE = languageGrp[1] # the second is German
termIT_dict = {}
for termGrp in languageGrpIT.findall("termGrp"): # iterating over Italian terms in entry
termIT = termGrp.find('term')
termIT_text = termIT.text # getting the IT term
if len(termIT_text) == 1:
continue # removing terms composed by only one letter (ex. "e" in 27507)
statusTermine = "NA"
statusBistroITA = "NA"
termFields = termGrp.findall("descripGrp")
for termfield in termFields:
try:
statusTermine = termfield.find('descrip[@type="Status termine"]').text # getting Status termine
except:
pass
try:
statusBistroITA = termfield.find('descrip[@type="Status bistro ITA"]').text # getting Status bistro ITA
except:
pass
termIT_dict[termIT_text] = (statusTermine, statusBistroITA)
termDE_dict = {}
for termGrp in languageGrpDE.findall("termGrp"):
termDE = termGrp.find('term')
termDE_text = termDE.text # getting the DE term
if termDE_text == "landes…":
termDE_text = "landes" # "correcting" entry "provinciale" = "landes..."/"provinzial"
sprachgebrauch = "NA"
termStatus = "NA"
statusBistroDEU = "NA"
termFields = termGrp.findall("descripGrp")
for termfield in termFields:
try:
sprachgebrauch = termfield.find('descrip[@type="Sprachgebrauch"]').text # getting Sprachgebrauch
try:
sprachgebrauch = sprachgebrauch.split("|")
except:
pass
except:
pass
try:
termStatus = termfield.find('descrip[@type="Termstatus"]').text # getting Termstatus
except:
pass
try:
statusBistroDEU = termfield.find('descrip[@type="Status bistro DEU"]').text # getting Status bistro DEU
except:
pass
if termStatus == "Südtirol genormt":
counter_standardised_AA += 1
termDE_dict[termDE_text] = (sprachgebrauch, termStatus, statusBistroDEU)
termDE_dict_new = {}
# adding missing tags according to Termstatus tag (genormt, empfohlen, Übersetzungsvorschlag, NA)
status = set()
for de_term, (spr, deStatus, deStatusBistro) in termDE_dict.items():
status.add(deStatus)
if "Südtirol genormt" in status: # handling entries with standardised terms
for de_term, (spr, deStatus, deStatusBistro) in termDE_dict.items():
if "Südtirol" in spr and deStatus == "Südtirol genormt": # South Tyrol standardised terms
deStatus = "CS" # overwrite "Südtirol genormt" with CS tag
elif "Südtirol" in spr and deStatus == "NA": # South Tyrol variants of standardised terms
deStatus = "CV" # assign CV tag
elif "Südtirol" not in spr: # terms from other legal systems
deStatus = "NST-S" # assing NST-S tag
termDE_dict_new[de_term] = (spr, deStatus, deStatusBistro)
elif "in Südtirol empfohlen" in status: # handling entries with recommended terms
for de_term, (spr, deStatus, deStatusBistro) in termDE_dict.items():
if "Südtirol" in spr and deStatus == "in Südtirol empfohlen": # South Tyrol recommended terms
deStatus = "CS" # overwrite "in Südtirol empfohlen" with CS tag
elif "Südtirol" in spr and deStatus == "NA": # South Tyrol variants of recommended terms
deStatus = "CV" # assign CV tag
elif "Südtirol" not in spr: # terms from other legal systems
deStatus = "NST-S" # assign NST-S tag
termDE_dict_new[de_term] = (spr, deStatus, deStatusBistro)
else:
# handling entries with NO standardised/recommended terms;
# also translation proposals (Übersetzungsvorschlag) fall in this group
for de_term, (spr, deStatus, deStatusBistro) in termDE_dict.items():
if "Südtirol" in spr and deStatus == "NA": # South Tyrol terms
deStatus = "CNS" # assign CNS tag
elif "Südtirol" not in spr: # terms from other legal systems
deStatus = "NST-NS" # assign NST-NS tag
termDE_dict_new[de_term] = (spr, deStatus, deStatusBistro)
# defensive: check len differences between old and modified dict
if len(termDE_dict) != len(termDE_dict_new):
print("Different lengths...!")
print(termDE_dict)
print(termDE_dict_new)
# filtering out entries with no terms with Sprachgebrauch="Südtirol" tag
laender = set()
for de_term, (spr, deStatus, deStatusBistro) in termDE_dict_new.items():
for land in spr:
laender.add(land) # adding all Länders from Sprachgebrauch to a set
if "Südtirol" not in laender: # if entry does only contain non-South-Tyrol terms, discard
counter_noAA += 1
continue # discarding
termBase[ID] = (termIT_dict, termDE_dict_new) # adding entry to the final termbase dictionary
# counting Italian and German terms
for id, (it, de) in termBase.items():
for it_term in it.items():
counter_italian_terms += 1
for de_term in de.items():
counter_german_terms += 1
# exporting full TB with tags as "TB_full.pkl" to be used in LexTermEval.py
with open(r"TB_full.pkl", "wb") as file:
pickle.dump(termBase, file)
# converting to reduced lemmatised TB (id-termsIT-termsAA only) and full lemmatised tb (all German terms) for matching purposes
# {id:([termsIT], [termsAA_only])} and {id:([termsIT], [termsDE_all])}
TB_PhraseMatcher_AA = {}
TB_PhraseMatcher_German = {}
for id, (italian, german) in termBase.items():
it_terms = []
for it_term, (itStatus, itStatusBistro) in italian.items():
it_terms.append(lemmatise(it_term, "it")) # appending lemmatised Italian terms
de_terms = []
de_terms_all = []
for de_term, (spr, deStatus, deStatusBistro) in german.items():
de_terms_all.append(lemmatise(de_term, "de"))
if "Südtirol" in spr:
de_terms.append(lemmatise(de_term, "de")) # appending only South Tyrol terms (lemmatised)
counter_AA_terms += 1
TB_PhraseMatcher_AA[id] = (it_terms, de_terms)
TB_PhraseMatcher_German[id] = (it_terms, de_terms_all)
# export as "TB_m_lemmatised.pkl" for LexTermEval.py
with open(r"TB_m_lemmatised.pkl", "wb") as file:
pickle.dump(TB_PhraseMatcher_AA, file)
# export as "TB_full_lemmatised.pkl" for LexTermEval.py
with open(r"TB_full_lemmatised.pkl", "wb") as file:
pickle.dump(TB_PhraseMatcher_German, file)
print("Total entries in TB: ", len(termBase))
print("Total Italian terms in TB: ", counter_italian_terms)
print("Total South Tyrolean German terms in TB: ", counter_AA_terms)
print("Total German terms in TB: ", counter_german_terms)
print("Total terms in TB: ", counter_italian_terms + counter_german_terms)
print("Entries discarded (South Tyrol term missing): ", counter_noAA)
print(len(TB_PhraseMatcher_AA))
print(len(TB_PhraseMatcher_German))
print(len(termBase))