-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfashionmnist_cnn.py
244 lines (194 loc) · 8.61 KB
/
fashionmnist_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import os
import os.path
from collections import OrderedDict
import torch
from torch import nn, optim
import numpy as np
from torch.utils.data import Dataset, DataLoader, sampler
from torchvision import datasets
import pickle
from utils import *
class FashionMNIST(Dataset):
img_shape = (1, 28, 28)
classes = [
'T-shirt/top',
'Trouser',
'Pullover',
'Dress',
'Coat',
'Sandal',
'Shirt',
'Sneaker',
'Bag',
'Ankle boot',
]
def __init__(self, folder, batch_size=32, num_workers=0, val_size=.2, seed=123):
self.folder = folder
train = datasets.FashionMNIST(folder, train=True, download=True)
test = datasets.FashionMNIST(folder, train=False, download=True)
data = torch.cat([
train.train_data.unsqueeze(1).float() / 255.,
test.test_data.unsqueeze(1).float() / 255.,
])
labels = torch.cat([
train.train_labels, test.test_labels
]).long()
train_val_size = len(train)
test_size = len(data) - train_val_size
self.seed = seed
rs = np.random.RandomState(seed)
train_val = np.arange(train_val_size)
rs.shuffle(train_val)
test = np.arange(train_val_size, len(data))
dataset_size = len(data)
idx = np.arange(dataset_size)
train_val_size = len(train_val)
train_size = int(round(train_val_size * (1 - val_size)))
val_size = train_val_size - train_size
train, val = train_val[:train_size], train_val[train_size:]
train_sampler = sampler.SubsetRandomSampler(train)
val_sampler = sampler.SubsetRandomSampler(val)
train_val_sampler = sampler.SubsetRandomSampler(train_val)
test_sampler = sampler.SubsetRandomSampler(test)
train_loader = DataLoader(self, batch_size=batch_size, num_workers=num_workers, sampler=train_sampler)
val_loader = DataLoader(self, batch_size=batch_size, num_workers=num_workers, sampler=val_sampler)
train_val_loader = DataLoader(self, batch_size=batch_size, num_workers=num_workers, sampler=train_val_sampler)
test_loader = DataLoader(self, batch_size=batch_size, num_workers=num_workers, sampler=test_sampler)
num_classes = len(self.classes)
for k, v in locals().items():
setattr(self, k, v)
def __len__(self):
return self.dataset_size
def __getitem__(self, idx):
X = self.data[idx]
y = self.labels[idx]
cls = self.classes[y]
return X, y, cls
def fashionmnist_model():
feature_model = nn.Sequential( # 1, 28, 28
OrderedDict([
('conv1', nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1, bias=False)), # 32, 28, 28
('conv1_bn', nn.BatchNorm2d(32)),
('conv1_relu', nn.ReLU()),
('conv2', nn.Conv2d(32, 64, kernel_size=3, stride=3, padding=1, bias=False)), # 64, 10, 10
('conv2_bn', nn.BatchNorm2d(64)),
('conv2_relu', nn.ReLU()),
('conv3', nn.Conv2d(64, 128, kernel_size=3, stride=1, bias=False)), # 128, 8, 8
('conv3_bn', nn.BatchNorm2d(128)),
('conv3_relu', nn.ReLU()),
('conv4', nn.Conv2d(128, 128, kernel_size=3, stride=1, bias=False)), # 128, 6, 6
('conv4_bn', nn.BatchNorm2d(128)),
('conv4_relu', nn.ReLU())
])
)
classifier_model = nn.Sequential(
OrderedDict([
('dense1', nn.Linear(128 * 6 * 6, 128, bias=False)),
('dense1_bn', nn.BatchNorm1d(128)),
('dense1_relu', nn.ReLU()),
('dense1_dropout', nn.Dropout()),
('output', nn.Linear(128, 10)),
])
)
model = nn.Sequential(
OrderedDict([
('features', feature_model),
('flatten', Flatten()),
('classifier', classifier_model)
])
)
return model
class ConvVAE(nn.Module):
def __init__(self, emb_dim):
super().__init__()
self.emb_dim = emb_dim
self.encoder = nn.Sequential(OrderedDict([
('features', nn.Sequential(
OrderedDict([
('conv1', nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1, bias=False)), # 32, 28, 28
('conv1_bn', nn.BatchNorm2d(32)),
('conv1_relu', nn.ReLU()),
('conv2', nn.Conv2d(32, 64, kernel_size=3, stride=3, padding=1, bias=False)), # 64, 10, 10
('conv2_bn', nn.BatchNorm2d(64)),
('conv2_relu', nn.ReLU()),
('conv3', nn.Conv2d(64, 128, kernel_size=3, stride=1, bias=False)), # 128, 8, 8
('conv3_bn', nn.BatchNorm2d(128)),
('conv3_relu', nn.ReLU()),
('conv4', nn.Conv2d(128, 128, kernel_size=3, stride=1, bias=False)), # 128, 6, 6
('conv4_bn', nn.BatchNorm2d(128)),
('conv4_relu', nn.ReLU()),
('conv5', nn.Conv2d(128, 256, kernel_size=3, stride=1, bias=False)), # 256, 4, 4
('conv5_bn', nn.BatchNorm2d(256)),
('conv5_relu', nn.ReLU()),
])
)),
('dense', nn.Sequential(
OrderedDict([
('flatten', Flatten()),
('dense1', nn.Linear(256 * 4 * 4, 128, bias=False)),
('dense1_bn', nn.BatchNorm1d(128)),
('dense1_relu', nn.ReLU()),
('dense1_dropout', nn.Dropout()),
])
))
]))
self.encoder_mu = nn.Linear(128, emb_dim)
self.encoder_logvar = nn.Linear(128, emb_dim)
self.decoder = nn.Sequential(OrderedDict([
('dense1', nn.Linear(emb_dim, 256 * 4 * 4)),
('dense1_bn', nn.BatchNorm1d(256 * 4 * 4)),
('dense1_relu', nn.ReLU()),
('dense1_dropout', nn.Dropout()),
('reshape', Reshape(-1, 256, 4, 4)),
('deconv5', nn.ConvTranspose2d(256, 128, kernel_size=3, stride=1, bias=False)), # 256, 4, 4
('deconv5_bn', nn.BatchNorm2d(128)),
('deconv5_relu', nn.ReLU()),
('deconv4', nn.ConvTranspose2d(128, 128, kernel_size=3, stride=1, bias=False)), # 128, 6, 6
('deconv4_bn', nn.BatchNorm2d(128)),
('deconv4_relu', nn.ReLU()),
('deconv3', nn.ConvTranspose2d(128, 64, kernel_size=3, stride=1, bias=False)),
('deconv3_bn', nn.BatchNorm2d(64)),
('deconv3_relu', nn.ReLU()),
('deconv2', nn.ConvTranspose2d(64, 32, kernel_size=3, stride=3, padding=1, bias=False)),
('deconv2_bn', nn.BatchNorm2d(32)),
('deconv2_relu', nn.ReLU()),
('deconv1', nn.ConvTranspose2d(32, 1, kernel_size=3, stride=1, padding=1, bias=False)),
('deconv1_bn', nn.BatchNorm2d(1)),
('deconv1_relu', nn.Sigmoid()),
]))
def encode(self, input):
encoder_features = self.encoder(input)
mu, logvar = self.encoder_mu(encoder_features), self.encoder_logvar(encoder_features)
return mu, logvar
def decode(self, code):
return self.decoder(code)
def forward(self, input):
mu, logvar = self.encode(input)
if self.training:
std = torch.exp(0.5*logvar)
eps = torch.randn_like(std)
code = eps.mul(std).add_(mu)
else:
code = mu
decoded = self.decode(code)
return decoded, mu, logvar, code
def loss(self, recon_X, X, mu, logvar):
BCE = F.binary_cross_entropy(recon_X, X, size_average=False)
# see Appendix B from VAE paper:
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
# https://arxiv.org/abs/1312.6114
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return BCE + KLD
def find_closest_embedding(self, device, x, mu, logvar, n_samples=100, norm=2):
std = torch.exp(0.5*logvar).to(device)
eps = torch.randn(*std.shape, n_samples).to(device)
samples_emb = eps.mul(std.view(*std.shape, 1)).add_(mu.view(*mu.shape, 1))
closest_emb = torch.stack([
embs[:,
(xi.unsqueeze(0) - self.decode(embs.t()))\
.view(n_samples, -1).norm(p=norm, dim=1).argmin(dim=0)
]
for xi, embs in zip(x, samples_emb)
], dim=0)
return closest_emb