|
| 1 | +library(RColorBrewer) # needed for some extra colours in one of the graphs |
| 2 | +library(vegan) |
| 3 | +library(phyloseq) |
| 4 | +library(igraph) |
| 5 | +library(Hmisc) |
| 6 | +library(Matrix) |
| 7 | +library(SpiecEasi) |
| 8 | +library(microbiome) |
| 9 | + |
| 10 | +PS.TSS <- readRDS("tmp/PS.TSS_filtered.rds") |
| 11 | + |
| 12 | +Bac <- subset_taxa(PS.TSS, Kingdom %in%"Bacteria") |
| 13 | +Parasite <- subset_taxa(PS.TSS, Genus %in%c("Eimeria", "Cryptosporidium", "Syphacia", "Aspiculuris", "Ascaridida", "Mastophorus","Trichuris", "Hymenolepis", "Tritrichomonas")) |
| 14 | +Parasite@tax_table[,1] <- "Parasite" |
| 15 | +Fungi <- subset_taxa(PS.TSS, Phylum %in% c("Mucoromycota", "Ascomycota", "Basidiomycota")) |
| 16 | +Fungi@tax_table[,1] <- "Fungi" |
| 17 | + |
| 18 | + |
| 19 | +Euk <- merge_phyloseq(Parasite, Fungi) |
| 20 | +Bac |
| 21 | + |
| 22 | + |
| 23 | +## prevalebce filtering of 5% |
| 24 | +KeepTaxap <- microbiome::prevalence(Bac)>0.05 |
| 25 | +Bac <- phyloseq::prune_taxa(KeepTaxap, Bac) |
| 26 | + |
| 27 | +KeepTaxap <- microbiome::prevalence(Euk)>0.05 |
| 28 | +Euk <- phyloseq::prune_taxa(KeepTaxap, Euk) |
| 29 | + |
| 30 | +#### spiec easi |
| 31 | +pargs <- list(rep.num=1000, seed=10010, ncores=90, thresh=0.05) |
| 32 | +## mb |
| 33 | +#t1 <- Sys.time() |
| 34 | +#se.net <- spiec.easi(list(Bac, Euk), method="mb", pulsar.params=pargs) |
| 35 | +#t2 <- Sys.time() |
| 36 | +#t2-t1 |
| 37 | +#saveRDS(se.net, "tmp/se.fnet.rds") |
| 38 | + |
| 39 | +se.net <- readRDS("tmp/se.fnet.rds") |
| 40 | + |
| 41 | +se.net$select$stars$summary # lambda path |
| 42 | + |
| 43 | +se.net$select |
| 44 | + |
| 45 | +# coding bacteria/eukaryote nodes |
| 46 | +dtype <- c(rep(1,ntaxa(Bac)), rep(2,ntaxa(Euk))) |
| 47 | + |
| 48 | +bac.ids=taxa_names(Bac) |
| 49 | +euk.ids= taxa_names(Euk) |
| 50 | +net.ids <- c(bac.ids,euk.ids) |
| 51 | + |
| 52 | +# plotting |
| 53 | +bm=symBeta(getOptBeta(se.net), mode="maxabs") |
| 54 | + |
| 55 | +diag(bm) <- 0 |
| 56 | + |
| 57 | +#weights <- Matrix::summary(t(bm))[,3] # includes negative weights |
| 58 | +weights <- (1-Matrix::summary(t(bm))[,3])/2 # ort |
| 59 | + |
| 60 | +weights |
| 61 | + |
| 62 | +net <- SpiecEasi::adj2igraph(Matrix::drop0(getRefit(se.net)), |
| 63 | + edge.attr=list(weight=weights), |
| 64 | + vertex.attr = list(name=net.ids)) |
| 65 | + |
| 66 | +E(net) |
| 67 | + |
| 68 | +betaMat=as.matrix(symBeta(getOptBeta(se.net))) |
| 69 | + |
| 70 | +# we want positive edges to be green and negative to be red |
| 71 | +edges <- E(net) |
| 72 | +edge.colors=c() |
| 73 | +for (e.index in 1:length(edges)){ |
| 74 | + adj.nodes=ends(net, edges[e.index]) |
| 75 | + xindex=which(net.ids==adj.nodes[1]) |
| 76 | + yindex=which(net.ids==adj.nodes[2]) |
| 77 | + beta=betaMat[xindex, yindex] |
| 78 | + if (beta>0){ |
| 79 | + edge.colors=append(edge.colors, "#1B7837") |
| 80 | + }else if(beta<0){ |
| 81 | + edge.colors=append(edge.colors, "#762A83") |
| 82 | + } |
| 83 | +} |
| 84 | +E(net)$color=edge.colors |
| 85 | + |
| 86 | +### defining attributes |
| 87 | +V(net)$type=c(rep("Bacteria", length(taxa_names(Bac))), rep("Eukaryote", length(taxa_names(Euk)))) |
| 88 | +V(net)$genus=c(Bac@tax_table[,6], Euk@tax_table[,6]) |
| 89 | +V(net)$family=c(Bac@tax_table[,5], Euk@tax_table[,5]) |
| 90 | +V(net)$phylum=c(Bac@tax_table[,2], Euk@tax_table[,2]) |
| 91 | +V(net)$domain=c(Bac@tax_table[,1], Euk@tax_table[,1]) |
| 92 | + |
| 93 | +V(net)$stype <- c(rep("circle",ntaxa(Bac)), rep("square",ntaxa(Euk))) |
| 94 | + |
| 95 | +bad<-V(net)[degree(net) == 0] |
| 96 | + |
| 97 | +net <-delete.vertices(net, bad) |
| 98 | + |
| 99 | +hub.s <- hub_score(net)$vector |
| 100 | + |
| 101 | +V(net)$lab.hub <- "" |
| 102 | + |
| 103 | + |
| 104 | +V(net)$lab.hub <- V(net)$genus |
| 105 | + |
| 106 | +V(net)$label.cex <- 0.5 |
| 107 | +V(net)$label.dist <- 0 |
| 108 | + |
| 109 | +V(net)$label.degree <- pi/2 |
| 110 | + |
| 111 | +# we also want the node color to code for phylum |
| 112 | +nb.col <- length(levels(as.factor(V(net)$phylum))) |
| 113 | +coul <- colorRampPalette(brewer.pal(8, "Accent"))(nb.col) |
| 114 | +mc <- coul[as.numeric(as.factor(V(net)$phylum))] |
| 115 | + |
| 116 | + |
| 117 | + |
| 118 | +pdf("fig/Network_prev05.pdf", |
| 119 | + width =10, height = 10) |
| 120 | +set.seed(1002) |
| 121 | +plot(net, |
| 122 | + layout=layout_with_fr(net), |
| 123 | + vertex.shape=V(net)$stype, |
| 124 | + vertex.label=V(net)$lab.hub, |
| 125 | + vertex.label.dist=0.4, |
| 126 | + vertex.label.degree=-pi/2, |
| 127 | + vertex.size=3, |
| 128 | + vertex.color=adjustcolor(mc,0.8), |
| 129 | + edge.width=as.integer(cut(E(net)$weight, breaks=6))/3, |
| 130 | + margin=c(0,1,0,0)) |
| 131 | +legend(x=-2, y=1, legend=levels(as.factor(V(net)$phylum)), col=coul, bty="n",x.intersp=0.25,text.width=0.045, pch=20, pt.cex=1.5) |
| 132 | +dev.off() |
| 133 | + |
| 134 | + |
| 135 | +################### modularity analysis |
| 136 | +### modules with fast and greedy |
| 137 | +modules =cluster_fast_greedy(net, weights=E(net)$weight) |
| 138 | +modules.louvain <- cluster_louvain(net, weights=E(net)$weight) |
| 139 | + |
| 140 | +modularity(modules) |
| 141 | + |
| 142 | +sizes(modules) |
| 143 | + |
| 144 | +V(net)$cluster=modules$membership |
| 145 | + |
| 146 | +## should we plot this? |
| 147 | +nodes <- V(net)$name |
| 148 | + |
| 149 | +cluster_id <- V(net)$cluster |
| 150 | + |
| 151 | +gen <- paste(V(net)$domain, V(net)$genus, sep="__") |
| 152 | + |
| 153 | +nodes<-as.data.frame(cbind(nodes, cluster_id, gen)) |
| 154 | + |
| 155 | +#nodes$cluster_id <- as.numeric(nodes$cluster_id) |
| 156 | +# |
| 157 | +#nodes$cluster_id[order(nodes$cluster_id)] |
| 158 | + |
| 159 | +nodes[cluster_id==3,] |
| 160 | + |
| 161 | +nodes <- nodes[nodes$cluster_id<46,] |
| 162 | + |
| 163 | +nodes[grep("Fungi", nodes$gen),] |
| 164 | + |
| 165 | +fam.cl <- as.data.frame(table(nodes$fam, nodes$cluster <- id)) |
| 166 | + |
| 167 | +##############some viz of cluster 2 |
| 168 | +net10c <- delete <- edges(net10b, which(E(net10b)$color=="red")) |
| 169 | +V(net10c)$c2 <- "" |
| 170 | +V(net10c)$c2[which(V(net10c)$cluster==6)] <- V(net10c)$species[which(V(net10c)$cluster==6)] |
| 171 | +V(net10c)$c2 |
| 172 | +V.cl2 <- V(net10b)$name[which(V(net10b)$cluster==6)] |
| 173 | +net.cl2 <- induced <- subgraph(net10b, V.cl2) |
| 174 | +nodes[cluster <- id==6,] |
| 175 | +degc <- igraph::degree(net.cl2, mode="all") |
0 commit comments