-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
441 lines (369 loc) · 15.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
import os
import sys
import config
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
sns.set()
import math
import collections
PLOT_FOLDER = config.PLOT_FOLDER
def convert_name_for_optimizer(opt_name):
corrected_opt_name = None
for k in list(config._OPTIMIZER_CONVERSION_NAMES.keys()):
if k.lower() == opt_name.lower():
corrected_opt_name = config._OPTIMIZER_CONVERSION_NAMES[k]
break
if corrected_opt_name is not None:
print("Corrected {0} to {1}".format(opt_name, corrected_opt_name))
return corrected_opt_name
else:
return opt_name
def get_display_names_for_optimizers(opt_names):
return [get_display_name_for_optimizer(convert_name_for_optimizer(name)) for name in opt_names]
def get_display_name_for_optimizer(opt_name):
opt_name = convert_name_for_optimizer(opt_name)
corrected_opt_name = None
for k in list(config._OPTIMIZER_DISPLAY_NAMES.keys()):
if k.lower() == opt_name.lower():
corrected_opt_name = config._OPTIMIZER_DISPLAY_NAMES[k]
break
if corrected_opt_name is None:
raise Exception("Unknown Optimizer name: ", opt_name)
return corrected_opt_name
def get_color_for_optimizer(opt_name):
opt_name = convert_name_for_optimizer(opt_name)
corrected_opt_name = None
for k in list(config._OPTIMIZER_TO_COLOR_DICT.keys()):
if k.lower() == opt_name.lower():
corrected_opt_name = k
break
if corrected_opt_name is None:
raise Exception("Unknown Optimizer name: ", opt_name)
return config._OPTIMIZER_TO_COLOR_DICT[corrected_opt_name]
def prune_invalid_params_for_classifier(params, classifier):
pruned_params = {}
valid_string_starts = [classifier, 'preprocessing', 'pca']
for k in params:
is_valid_key_for_classifier = any([str.startswith(k, x) for x in valid_string_starts])
if is_valid_key_for_classifier:
pruned_params[k] = params[k]
if pruned_params['preprocessing'] == 0 and 'pca:keep_variance' in pruned_params:
del pruned_params['pca:keep_variance']
if 'classifier' in pruned_params:
del pruned_params['classifier']
return pruned_params
def flatten(structure, key="", flattened=None):
# https://stackoverflow.com/questions/8477550/
# flattening-a-list-of-dicts-of-lists-of-dicts-etc-of-unknown-depth-in-python-n
if flattened is None:
flattened = {}
if type(structure) not in(dict, list):
flattened[key] = structure
elif isinstance(structure, list):
for i, item in enumerate(structure):
flatten(item, "%d" % i, flattened)
else:
for new_key, value in structure.items():
flatten(value, new_key, flattened)
return flattened
def flatten_list(li):
"""Flatten lists or tuples into their individual items. If those items are
again lists or tuples, flatten those."""
if isinstance(li, (list, tuple)):
for item in li:
yield from flatten_list(item)
else:
yield li
def plot_avg_rank_per_timestep(eval_fns_per_timestep, save_path, legend_loc='best'):
avg_rank_optimizer_dict = {}
stacked_eval_fns_per_timstep = np.stack([x for x in #get_mean_std_min_losses_per_timestep(x)[0] for x in
eval_fns_per_timestep.values()], axis=0)
mean_axes = tuple(list(range(1, len(stacked_eval_fns_per_timstep.shape) - 1)))
print(mean_axes)
print("stacked_eval_fns_per_timstep shape", stacked_eval_fns_per_timstep.shape)
avg_rank = np.mean(np.argsort(np.argsort(stacked_eval_fns_per_timstep, axis=0), axis=0), axis=mean_axes) + 1
for i in range(len(eval_fns_per_timestep.keys())):
k = list(eval_fns_per_timestep.keys())[i]
avg_rank_optimizer_dict[k] = avg_rank[i]
color = get_color_for_optimizer(k)
plt.plot(avg_rank_optimizer_dict[k], label=get_display_name_for_optimizer(k), color=color)
plt.legend(loc=legend_loc)
plt.ylabel('Average rank per timestep')
plt.xlabel('n_iterations')
plt.savefig(save_path)
def plot_cpu_time_per_optimizer(results, save_path=None, y_scale='log'):
# CPU time plotting:
from matplotlib import rcParams
rcParams.update({'figure.autolayout': True})
cpu_times = results_to_numpy(results, 2)
cpu_times_avg = {x: np.mean(np.fabs(cpu_times[x])) for x in cpu_times}
figsize = None
if len(list(cpu_times_avg.keys())) > 4:
figsize=(10, 5)
plt.figure(figsize=figsize)
plt.tight_layout()
colors = [get_color_for_optimizer(optimizer) for optimizer in list(cpu_times_avg.keys())]
plt.bar(range(len(cpu_times_avg)), cpu_times_avg.values(),
tick_label=get_display_names_for_optimizers(list(cpu_times_avg.keys())), color=colors)
plt.yscale(y_scale)
_y_label = 'CPU time in seconds'
if y_scale == 'log':
_y_label += " (log)"
plt.ylabel(_y_label, fontsize=14)
plt.xlabel('Optimizer', fontsize=14)
plt.xticks(fontsize=12)
plt.yticks(fontsize=14)
if save_path is not None:
plt.savefig(save_path)
else:
plt.show()
def plot_results_multiple(np_results, dataset_idx=0, avg_datasets=False, t_0=0, plot_ranges=True,
save_file_name_prefix=None):
for x_log in [True, False]:
for y_log in [True, False]:
file_name = save_file_name_prefix
if x_log or y_log:
file_name += "_log"
if x_log:
file_name += "_x"
if y_log:
file_name += "_y"
plot_results(np_results, dataset_idx=dataset_idx, avg_datasets=avg_datasets, t_0=t_0,
plot_ranges=plot_ranges, save_file_name=file_name, use_log_scale_x=x_log,
use_log_scale_y=y_log)
def plot_results(np_results, X=None, dataset_idx=0, avg_datasets=False, t_0=0, plot_ranges=True, use_log_scale_x=False,
use_log_scale_y=False, save_file_name=None, x_label="Optimization steps", y_label="Loss"):
"""
Plot results for given dataset or averaged from given start t_0
:param np_results: data to plot
:param dataset_idx: index of dataset to plot, not needed if avg_datasets=True
:param avg_datasets: Bool indicating whether to average over datasets or not
:param t_0: first time step to plot from
"""
from matplotlib import rcParams
rcParams.update({'figure.autolayout': True})
print("Plots, averaged={0} ".format(avg_datasets) +
(", dataset_idx={0}".format(dataset_idx) if avg_datasets is False else ""))
plt.figure()
for optimizer in np_results.keys():
color = get_color_for_optimizer(optimizer)
tmp_data = np_results[optimizer] if (avg_datasets or dataset_idx==None) else \
np_results[optimizer][dataset_idx]
avg_min_losses, std_min_losses, lower_min_losses, upper_min_losses = \
get_mean_std_min_losses_per_timestep(tmp_data, t_0=t_0)
_x = X
if _x is None:
_x = range(t_0, t_0 + len(lower_min_losses))
else:
_x = X[optimizer]
avg_min_x, _, _, _ = \
get_mean_std_min_losses_per_timestep(_x, t_0=t_0)
_x = avg_min_x
_x = np.cumsum(_x)
plt.plot(_x, avg_min_losses, label=get_display_name_for_optimizer(optimizer), color=color)
if plot_ranges:
plt.fill_between(x=_x, y1=lower_min_losses,
y2=upper_min_losses, alpha=0.3, color=color)
_x_label = x_label
_y_label = y_label
if use_log_scale_x:
plt.xscale('log')
_x_label += " (log scale)"
if use_log_scale_y:
plt.yscale('log')
_y_label += " (log scale)"
plt.xlabel(_x_label)
plt.ylabel(_y_label)
plt.legend(loc='best')
if save_file_name is not None:
plt.savefig(os.path.join(config.PLOT_FOLDER, save_file_name))
else:
plt.show()
plt.clf()
def get_mean_std_min_losses_per_timestep(data, axes=None, t_0=0):
"""
Calculate mean and standard deviation of the given experiment
:param data: shape [dataset_idx, iteration_idx, timesteps] if avg_datasets = True, else
shape [iteration_idx, timesteps]
:param avg_datasets: Bool indicating whether to average over datasets or not
:param t_0: start time step
:return: mean, std, 25 percentile, 75 percentile per timestep over experiment runs
"""
min_losses = np.minimum.accumulate(data, axis=-1)
min_losses = min_losses[..., t_0:]
if axes == None:
axes = tuple(range(len(data.shape) - 1))
avg_min_losses = np.percentile(min_losses, 50, axis=axes) # np.nanmean(min_losses, axis=axis)
std_min_losses = np.nanstd(min_losses, axis=axes)
lower_min_losses = np.percentile(min_losses, 25, axis=axes)
upper_min_losses = np.percentile(min_losses, 75, axis=axes)
# print("avg/std min_losses shape: ", avg_min_losses.shape, std_min_losses.shape)
return avg_min_losses, std_min_losses, lower_min_losses, upper_min_losses
def results_to_numpy(optimizer_results, result_idx=1, negative=True):
"""
Convert passed experiment results to numpy array
:param optimizer_results: dict of [optimizer][classifier]
:param result_idx: result idx:
0 = tmp_opt.hyperparameter_set_per_timestep,
1 = tmp_opt.eval_fn_per_timestep,
2 = tmp_opt.cpu_time_per_opt_timestep,
3 = tmp_opt.wall_time_per_opt_timestep
:return: numpy array of specified results
"""
np_results = {}
for optimizer in optimizer_results:
if type(optimizer_results[optimizer]) == dict:
tmp_results = {}
opt_results = optimizer_results[optimizer]
for classifier in opt_results:
results = np.array(opt_results[classifier])
results = np.array(results[..., result_idx], dtype=np.float32)
tmp_results[classifier] = -results if negative else results
np_results[optimizer] = tmp_results
else:
results = np.array(optimizer_results[optimizer])
results = np.array(results[..., result_idx], dtype=np.float32)
np_results[optimizer] = -results if negative else results
return np_results
def save_plotted_progress(optimizer, data=None, name=None, x_lim=None, y_lim=None):
os.makedirs(PLOT_FOLDER, exist_ok=True)
data_to_plot = data
if data_to_plot is None:
data_to_plot = optimizer.eval_fn_per_timestep
_name = name
if _name is None:
_name = optimizer.name
axes = plt.gca()
if y_lim is not None:
axes.set_ylim([y_lim[0], y_lim[1]])
plt.plot(data_to_plot)
plt.savefig(os.path.join(PLOT_FOLDER, _name))
plt.clf()
plt.cla()
plt.close()
def eval_fn_with_2_params(fn, x, y):
return fn({'x': x, 'y':y})
def gen_target_fn_samples(target_fn, param_ranges, n_samples_per_axis=100):
x_range = np.linspace(param_ranges[0][0], param_ranges[0][1], num=n_samples_per_axis)
y_range = np.linspace(param_ranges[1][0], param_ranges[1][1], num=n_samples_per_axis)
sample_points = np.array([[x, y] for x in x_range for y in y_range])
evals = np.array([[eval_fn_with_2_params(target_fn, x, y) for x in x_range] for y in y_range])
return sample_points, evals, x_range, y_range
def gen_example_2d_plot(sample_points, target_fn, param_ranges, name=None):
sns.reset_orig()
sns.reset_defaults()
import importlib
importlib.reload(mpl)
importlib.reload(plt)
importlib.reload(sns)
_name = name
if name is None:
_name = "example_2d_plot"
#param_ranges = [[np.min(sample_points[:, 0]), np.max(sample_points[:, 0])]
# , [np.min(sample_points[:, 1]), np.max(sample_points[:, 1])]]
_, evals, x_range, y_range = gen_target_fn_samples(target_fn, param_ranges)
x_marginal = np.average(evals, axis=0)
y_marginal = np.average(evals, axis=1)
p = sns.JointGrid(
x=sample_points[:, 0],
y=sample_points[:, 1],
xlim=[param_ranges[0][0] - 0.1, param_ranges[0][1] + 0.1],
ylim=[param_ranges[1][0] - 0.1, param_ranges[1][1] + 0.1]
)
p = p.plot_joint(
plt.scatter
)
p.ax_marg_x.xlim = (0, np.max(x_marginal))
p.ax_marg_x.ylim = (0, np.max(x_marginal))
p.ax_marg_x.fill_between(
x_range,
x_marginal,# * x_marginal,
alpha=0.5,
clim=(0, np.max(x_marginal))
)
p.ax_marg_y.xlim = (0, np.max(y_marginal))
p.ax_marg_y.ylim = (0, np.max(y_marginal))
p.ax_marg_y.fill_betweenx(
y_range,
y_marginal,
alpha=0.5,
clim=(0, 1e10)
)
sample_points_x_sorted_idx = np.argsort(sample_points[:, 0])
sample_points_y_sorted_idx = np.argsort(sample_points[:, 1])
sample_points_x_sorted = sample_points[:, 0][sample_points_x_sorted_idx]
sample_points_y_sorted = sample_points[:, 1][sample_points_y_sorted_idx]
evaluations_x_sorted = [eval_fn_with_2_params(target_fn, x, y) for (x, y) in
sample_points[sample_points_x_sorted_idx]] # evaluations[sample_points_x_sorted_idx]
evaluations_y_sorted = [eval_fn_with_2_params(target_fn, x, y) for (x, y) in
sample_points[sample_points_y_sorted_idx]] # evaluations[sample_points_y_sorted_idx]
p.ax_marg_x.scatter(
sample_points_x_sorted,
evaluations_x_sorted,
alpha=0.5,
color='k'
)
p.ax_marg_y.scatter(
evaluations_y_sorted,
sample_points_y_sorted,
alpha=0.5,
color='k'
)
p.ax_joint.set_xlabel("x")
p.ax_joint.set_ylabel("y")
print(evaluations_y_sorted)
plt.tight_layout()
#p.ax_marg_y.scatter(
# evaluations_y_sorted,
# sample_points_y_sorted,
# # orientation = 'horizontal',
# alpha=0.5,
# color='k')
plt.savefig(os.path.join(PLOT_FOLDER, _name))
plt.clf()
plt.cla()
plt.close()
def branin(a=1, b=5.1 / (4 * np.pi**2), c=5. / np.pi,
r=6, s=10, t=1. / (8 * np.pi)):
# Taken from: https://fluentopt.readthedocs.io/en/latest/auto_examples/plot_dict_format.html
"""Branin-Hoo function is defined on the square x1 ∈ [-5, 10], x2 ∈ [0, 15].
It has three minima with f(x*) = 0.397887 at x* = (-pi, 12.275),
(+pi, 2.275), and (9.42478, 2.475).
More details: <http://www.sfu.ca/~ssurjano/branin.html>
This code is adapted from : https://github.com/scikit-optimize/scikit-optimize
"""
def f(d):
x, y = d['x'], d['y']
return (a * (y - b * x ** 2 + c * x - r) ** 2 +
s * (1 - t) * np.cos(x) + s)
return f
def get_loss_ranges_per_classifier_dataset(losses, max_n_datasets=None):
"""
Extracts minimum and maximum losses per dataset and classifier
:param losses: dict of [classifier][parameters:frozenset][dataset_idx] mapping to a float loss
:param max_n_datasets: max number of datasets to look at
:return: dict [classifier] mapping to numpy array of shape [N_DATASETS, 2] with the last dimension being (min_val,
max_val)
"""
loss_ranges = {}
for c in losses:
loss_ranges[c] = []
for ds_idx in range(len(list(losses[c].values())[0])):
if max_n_datasets is not None and ds_idx >= max_n_datasets:
break
min_val = math.inf
max_val = -math.inf
for params in list(losses[c].keys()):
tmp_val = losses[c][params][ds_idx]
if tmp_val < min_val:
min_val = tmp_val
if tmp_val > max_val:
max_val = tmp_val
#print("Loss range for classifier {0} and dataset index {1} is {2}".format(c, ds_idx, (min_val, max_val)))
if min_val == max_val:
print("SAME MIN AND MAX FOR ", c, ds_idx)
loss_ranges[c] += [(min_val, max_val)]
loss_ranges[c] = np.array(loss_ranges[c])
return loss_ranges