-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
217 lines (167 loc) · 6.47 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import os
from typing import Dict, Tuple
from uuid import UUID
import altair as alt
import argilla as rg
from argilla.feedback import FeedbackDataset
from argilla.client.feedback.dataset.remote.dataset import RemoteFeedbackDataset
import gradio as gr
import pandas as pd
def obtain_source_target_datasets() -> (
Tuple[
FeedbackDataset | RemoteFeedbackDataset, FeedbackDataset | RemoteFeedbackDataset
]
):
"""
This function returns the source and target datasets to be used in the application.
Returns:
A tuple with the source and target datasets. The source dataset is filtered by the response status 'pending'.
"""
# Obtain the public dataset and see how many pending records are there
source_dataset = rg.FeedbackDataset.from_argilla(
os.getenv("SOURCE_DATASET"), workspace=os.getenv("SOURCE_WORKSPACE")
)
filtered_source_dataset = source_dataset.filter_by(response_status=["pending"])
# Obtain a list of users from the private workspace
target_dataset = rg.FeedbackDataset.from_argilla(
os.getenv("RESULTS_DATASET"), workspace=os.getenv("RESULTS_WORKSPACE")
)
return filtered_source_dataset, target_dataset
def get_user_annotations_dictionary(
dataset: FeedbackDataset | RemoteFeedbackDataset,
) -> Dict[str, int]:
"""
This function returns a dictionary with the username as the key and the number of annotations as the value.
Args:
dataset: The dataset to be analyzed.
Returns:
A dictionary with the username as the key and the number of annotations as the value.
"""
output = {}
for record in dataset:
for response in record.responses:
if str(response.user_id) not in output.keys():
output[str(response.user_id)] = 1
else:
output[str(response.user_id)] += 1
# Changing the name of the keys, from the id to the username
for key in list(output.keys()):
output[rg.User.from_id(UUID(key)).username] = output.pop(key)
return output
def donut_chart() -> alt.Chart:
"""
This function returns a donut chart with the number of annotated and pending records.
Returns:
An altair chart with the donut chart.
"""
source_dataset, _ = obtain_source_target_datasets()
annotated_records = len(source_dataset)
pending_records = int(os.getenv("TARGET_RECORDS")) - annotated_records
source = pd.DataFrame(
{
"values": [annotated_records, pending_records],
"category": ["Annotated", "Pending"], # Add a new column for categories
}
)
base = alt.Chart(source).encode(
theta=alt.Theta("values:Q", stack=True),
radius=alt.Radius(
"values", scale=alt.Scale(type="sqrt", zero=True, rangeMin=20)
),
color=alt.Color("category:N", legend=alt.Legend(title="Category")),
)
c1 = base.mark_arc(innerRadius=20, stroke="#fff")
c2 = base.mark_text(radiusOffset=10).encode(text="values:Q")
chart = c1 + c2
return chart
def kpi_chart() -> alt.Chart:
"""
This function returns a KPI chart with the total amount of annotators.
Returns:
An altair chart with the KPI chart.
"""
# Obtain the total amount of annotators
_, target_dataset = obtain_source_target_datasets()
user_ids_annotations = get_user_annotations_dictionary(target_dataset)
total_annotators = len(user_ids_annotations)
# Assuming you have a DataFrame with user data, create a sample DataFrame
data = pd.DataFrame({"Category": ["Total Annotators"], "Value": [total_annotators]})
# Create Altair chart
chart = (
alt.Chart(data)
.mark_text(fontSize=100, align="center", baseline="middle", color="steelblue")
.encode(text="Value:N")
.properties(title="Number of Annotators", width=250, height=200)
)
return chart
def obtain_top_5_users(user_ids_annotations: Dict[str, int]) -> pd.DataFrame:
"""
This function returns the top 5 users with the most annotations.
Args:
user_ids_annotations: A dictionary with the user ids as the key and the number of annotations as the value.
Returns:
A pandas dataframe with the top 5 users with the most annotations.
"""
dataframe = pd.DataFrame(
user_ids_annotations.items(), columns=["Name", "Annotated Records"]
)
dataframe = dataframe.sort_values(by="Annotated Records", ascending=False)
return dataframe.head(5)
def main() -> None:
# Connect to the space with rg.init()
rg.init(
api_url=os.getenv("ARGILLA_API_URL"),
api_key=os.getenv("ARGILLA_API_KEY"),
extra_headers={"Authorization": f"Bearer {os.getenv('HF_TOKEN')}"},
)
source_dataset, target_dataset = obtain_source_target_datasets()
user_ids_annotations = get_user_annotations_dictionary(target_dataset)
top5_dataframe = obtain_top_5_users(user_ids_annotations)
with gr.Blocks() as demo:
gr.Markdown(
"""
# 🗣️ The Prompt Collective Dashboad
This Gradio dashboard shows the progress of the first "Data is Better Together" initiative to understand and collect good quality and diverse prompt for the OSS AI community.
If you want to contribute to OSS AI, join [the Prompt Collective HF Space](https://huggingface.co/spaces/DIBT/prompt-collective).
"""
)
gr.Markdown(
"""
## 🚀 Contributors Progress
How many records have been submitted, how many are still pending?
"""
)
plot = gr.Plot(label="Plot")
demo.load(
donut_chart,
inputs=[],
outputs=[plot],
)
gr.Markdown(
"""
## 👾 Contributors Hall of Fame
The number of all annotators and the top 5 users with the most responses are:
"""
)
with gr.Row():
plot2 = gr.Plot(label="Plot")
demo.load(
kpi_chart,
inputs=[],
outputs=[plot2],
)
gr.Dataframe(
value=top5_dataframe,
headers=["Name", "Annotated Records"],
datatype=[
"str",
"number",
],
row_count=5,
col_count=(2, "fixed"),
interactive=False,
),
# Launch the Gradio interface
demo.launch()
if __name__ == "__main__":
main()