-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathROI_extraction.py
191 lines (143 loc) · 8.44 KB
/
ROI_extraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import numpy as np
import cv2
import matplotlib.pyplot as plt
from preprocessing import CLAHE
def detect_left_boundary(image):
# use a matrix as the kernel, convolve it on the image to find black-to-white vertical edges
vertical_edge_detector = [[-2, 0, 2],
[-2, 0, 2],
[-2, 0, 2]]
v_kernel = np.array(vertical_edge_detector, dtype=np.float32) / 1.0
v_edges = cv2.filter2D(image, -1, v_kernel)
# do a heavy bilateral filtering, since the image is too noisy
v_edges = cv2.bilateralFilter(v_edges, 45, 75, 75)
# extract the dimensions of the input image
height, width = image.shape[0], image.shape[1]
# pick a specific window (experimentally obtained) of the image as the "left_window"
left_window_close = int(width / 5.0)
left_window_open = int(width / 10.0)
# find the average intensity of all the pixels in the left window
left_quarter = v_edges[:, left_window_open:left_window_close]
mean_intensity_left = float(round(left_quarter.mean(), 2))
# print("average intensity of left-window is:", mean_intensity_left)
# find the intensity of all the image columns residing inside the left window
intensity_list = list(sum(v_edges[:, left_window_open:left_window_close]))
# define initial value of required variables
mx = mean_intensity_left
possible_left_boundaries = list()
# find the possible boundaries; the condition detects every dark-to-bright supervene change (edge)
for idx in range(0, len(intensity_list) - 2):
if (intensity_list[idx] < mx) & (intensity_list[idx + 1] > mx) & (intensity_list[idx + 2] > mx):
possible_left_boundaries.append(idx)
# if the condition is not met at all, just pass a rational left boundary to the list
if possible_left_boundaries == []:
possible_left_boundaries.append(int((left_window_open + left_window_close) / 3))
# the last element is the best left boundary (resulting in smaller ROI image)
left_boundary = possible_left_boundaries[-1] + left_window_open
# draw the left boundary as a black line on the input image
v_thickness = int(width / 300)
adaptive_equalized = cv2.line(image, (left_boundary, 0), (left_boundary, height), 0, v_thickness)
return left_boundary
def detect_right_boundary(image, left_boundary):
# extract the width of the input image
height, width = image.shape[0], image.shape[1]
# the right boundary is symmetrical to the left one (in most cases)
right_boundary = width - left_boundary
# draw the right boundary as a black line on the input image
v_thickness = int(width / 300)
adaptive_equalized = cv2.line(image, (right_boundary, 0), (right_boundary, height), 0, v_thickness)
return right_boundary
def detect_lower_boundary(image, left_boundary):
# use a matrix as the kernel to find black-to-white horizontal edges
horizontal_edge_detector = [[2, 2, 2],
[0, 0, 0],
[-2, -2, -2]]
h_kernel = np.array(horizontal_edge_detector, dtype=np.float32) / 1.0
h_edges = cv2.filter2D(image, -1, h_kernel)
h_edges = cv2.bilateralFilter(h_edges, 45, 75, 75)
# extract the dimensions of the input image
height, width = image.shape[0], image.shape[1]
# choose a specific window (experimentally obtained) as the "lower_window"
lower_window_close = int(height / 2.5)
lower_window_open = int(height / 5.0)
# extract the column of the left boundary as "column_of_interest"
column_of_interest = h_edges[:, left_boundary]
# reverse it. because we want to find the outer edge of the maxilla, which is the lower boundary
column_of_interest = list(reversed(column_of_interest))
# find the intensity of all the image rows residing inside the lower window
lower_quarter = h_edges[lower_window_open:lower_window_close, left_boundary]
mean_intensity_lower = float(round(lower_quarter.mean(), 2))
# print("average intensity of lower-window is:", mean_intensity_lower)
# define initial value of required variables
ml = mean_intensity_lower
possible_lower_boundaries = list()
# find the possible boundaries; the condition detects every dark-to-bright supervene change (edge)
for idx in range(lower_window_open, lower_window_close - 2):
if (column_of_interest[idx] < ml) & (column_of_interest[idx + 1] >= ml) & (column_of_interest[idx + 2] >= ml):
possible_lower_boundaries.append(idx)
# if the condition is not met at all, just pass a rational lower boundary to the list
if possible_lower_boundaries == []:
possible_lower_boundaries.append(int((lower_window_open + lower_window_close) / 3))
# the first element is the best lower boundary (resulting in smaller ROI image)
lower_boundary = height - possible_lower_boundaries[0]
# draw the lower boundary as a black line on the input image
h_thickness = int(height / 150)
adaptive_equalized = cv2.line(image, (0, lower_boundary), (width, lower_boundary), 0, h_thickness)
return lower_boundary
def detect_upper_boundary(image, left_boundary):
# use a matrix as the kernel to find white-to-black horizontal edges
horizontal_edge_detector = [[-2, -2, -2, -2, -2],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[2, 2, 2, 2, 2]]
h_kernel = np.array(horizontal_edge_detector, dtype=np.float32) / 1.0
h_edges = cv2.filter2D(image, -1, h_kernel)
h_edges = cv2.bilateralFilter(h_edges, 45, 75, 75)
# extract the dimensions of the input image
height, width = image.shape[0], image.shape[1]
# choose a specific window (experimentally obtained) as the "lower_window"
upper_window_close = int(height / 2.0)
upper_window_open = int(height / 5.0)
# extract the column of the left boundary as "column_of_interest"
column_of_interest = h_edges[:, left_boundary]
# find the intensity of all the image pixels residing inside the upper window of our column of interest
upper_quarter = column_of_interest[upper_window_open:upper_window_close]
mean_intensity_upper = float(round(upper_quarter.mean(), 2))
# print("average intensity of upper-window is:", mean_intensity_upper)
# define initial value of required variables
mp = mean_intensity_upper
possible_upper_boundaries = list()
# find the possible boundaries; the condition detects every dark-to-bright supervene change (edge)
for idx in range(upper_window_open, upper_window_close - 2):
if (column_of_interest[idx] < mp) & (column_of_interest[idx + 1] >= mp) & (column_of_interest[idx + 2] >= mp):
possible_upper_boundaries.append(idx)
# if the condition is not met at all, just pass a rational lower boundary to the list
if possible_upper_boundaries == []:
possible_upper_boundaries.append(int((upper_window_open + upper_window_close) / 3))
# the first element is the best lower boundary (resulting in smaller ROI image)
upper_boundary = possible_upper_boundaries[0]
# draw the lower boundary as a black line on the input image
h_thickness = int(height / 150)
adaptive_equalized = cv2.line(image, (0, upper_boundary), (width, upper_boundary), 0, h_thickness)
return upper_boundary
def extract_roi(image, return_result=False, show_result=False):
# at first, load the image and do the CLAHE as the pre-processing step
# print("image dimensions are:", image.shape)
adaptive_equalized = CLAHE(image=image, clip_limit=2.0, grid_size=8)
# then, extract the desired boundaries
left_boundary = detect_left_boundary(image=adaptive_equalized)
right_boundary = detect_right_boundary(image=adaptive_equalized, left_boundary=left_boundary)
lower_boundary = detect_lower_boundary(image=adaptive_equalized, left_boundary=left_boundary)
upper_boundary = detect_upper_boundary(image=adaptive_equalized, left_boundary=left_boundary)
roi = image[upper_boundary:lower_boundary, left_boundary:right_boundary]
boundaries = [left_boundary, right_boundary, lower_boundary, upper_boundary]
# plot the result as well as the input image
if show_result:
plt.subplot(211), plt.imshow(adaptive_equalized, cmap='gray')
plt.xticks([]), plt.yticks([])
plt.subplot(212), plt.imshow(roi, cmap='gray')
plt.xticks([]), plt.yticks([])
plt.show()
if return_result:
return roi, boundaries