-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmid_darkness_brightening.py
48 lines (37 loc) · 1.94 KB
/
mid_darkness_brightening.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import cv2
import numpy as np
import matplotlib.pyplot as plt
import copy
# from ROI_extractor import extract_roi
from preprocessing import CLAHE, match_histogram, draw_histogram
for i in range(1, 5):
img = cv2.imread('./test-cropped-images/%d.bmp' % i, 0)
# draw_histogram(image=img)
unedited_img = copy.deepcopy(img)
unedited_img = CLAHE(image=unedited_img, grid_size=8, clip_limit=2.)
height, width = img.shape[0], img.shape[1]
middle_width = int(width / 2.)
# blur_window_size = int((height + width) / 7.)
# if blur_window_size % 2 is 0:
# blur_window_size += 1
#
# img = cv2.GaussianBlur(img, (blur_window_size, blur_window_size), 0)
print('image shape is:', img.shape)
p1 = img[:, :int(5 * middle_width / 7.)]
# cv2.line(img, (int(5 * middle_width / 7.), 0), (int(5 * middle_width / 7.), height), 0, 4)
left_shadow = img[:, int(5 * middle_width / 7.):int(28 * middle_width / 30.)]
# cv2.line(img, (int(29 * middle_width / 30.), 0), (int(29 * middle_width / 30.), height), 0, 4)
p2 = img[:, int(28 * middle_width / 30.):int(32 * middle_width / 30.)]
# cv2.line(img, (int(31 * middle_width / 30.), 0), (int(31 * middle_width / 30.), height), 0, 4)
right_shadow = img[:, int(32 * middle_width / 30.):int(9 * middle_width / 7.)]
# cv2.line(img, (int(9 * middle_width / 7.), 0), (int(9 * middle_width / 7.), height), 0, 4)
p3 = img[:, int(9 * middle_width / 7.):]
template_left = img[:, :int(width / 3.)]
matched_left = match_histogram(source=left_shadow, template=template_left)
template_right = img[:, int(2 * width / 3.):]
matched_right = match_histogram(source=right_shadow, template=template_right)
final = np.hstack((p1, matched_left, p2, matched_right, p3))
final = CLAHE(image=final)
plt.subplot(2, 1, 1), plt.imshow(final, cmap='gray'), plt.axis('off')
plt.subplot(2, 1, 2), plt.imshow(unedited_img, cmap='gray'), plt.axis('off')
plt.show()