-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathXGBoost.py
46 lines (40 loc) · 1.88 KB
/
XGBoost.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import xgboost as xgb
import numpy as np
class XGBoost:
'''
Make a wrapper of xgboost to make it easy to use. The functions are written as in sklearn
'''
def __init__(self, num_round=100,validate = 0,params={}, early_stopping_rounds=10):
'''
Initiate the object.
Parameters =
num_round = Number of iterations. Default to 100
Pass other parameters as a dictionary: Paramters available on https://github.com/dmlc/xgboost/blob/master/doc/parameter.md
'''
self.num_round=num_round
self.model={}
self.params=params
self.validate=validate
self.early_stopping_rounds=early_stopping_rounds
def fit(self, X, y):
if self.validate == 0:
dtrain=xgb.DMatrix(X.astype(np.float64),label=y)
self.model=xgb.train(self.params, dtrain, self.num_round, [(dtrain,'train')])
# ,early_stopping_rounds = self.early_stopping_rounds)
else:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.15, random_state=42)
dtrain=xgb.DMatrix(X_train.astype(np.float64),label=y_train)
dval =xgb.DMatrix(X_test.astype(np.float64),label=y_test)
watchlist = [(dtrain, 'train'),(dval, 'val')]
self.model=xgb.train(self.params, dtrain, self.num_round, watchlist)
def get_fscore(self):
return self.model.get_fscore()
def predict(self, X):
dtest=xgb.DMatrix(X.astype(np.float64))
return self.model.predict(dtest)
def get_params(self, deep=True):
return {"num_round": self.num_round, "params": self.params,"validate":self.validate,"early_stopping_rounds":self.early_stopping_rounds}
def set_params(self, **parameters):
for parameter, value in parameters.items():
self.setattr(parameter, value)
return self