|
9 | 9 | | Windows | [](http://ci.arrayfire.org/view/All/job/arrayfire-wrappers/job/python-windows/) |
|
10 | 10 | | OSX | [](http://ci.arrayfire.org/view/All/job/arrayfire-wrappers/job/python-osx/) |
|
11 | 11 |
|
12 |
| -## Example |
13 |
| - |
14 |
| -```python |
15 |
| -import arrayfire as af |
16 |
| - |
17 |
| -# Display backend information |
18 |
| -af.info() |
19 |
| - |
20 |
| -# Generate a uniform random array with a size of 5 elements |
21 |
| -a = af.randu(5, 1) |
22 |
| - |
23 |
| -# Print a and its minimum value |
24 |
| -af.display(a) |
25 |
| - |
26 |
| -# Print min and max values of a |
27 |
| -print("Minimum, Maximum: ", af.min(a), af.max(a)) |
28 |
| -``` |
29 |
| - |
30 |
| -## Sample outputs |
| 12 | +## Documentation |
31 | 13 |
|
32 |
| -On an AMD GPU: |
| 14 | +Documentation for this project can be found [over here](http://arrayfire.org/arrayfire-python/). |
33 | 15 |
|
34 |
| -``` |
35 |
| -Using opencl backend |
36 |
| -ArrayFire v3.0.1 (OpenCL, 64-bit Linux, build 17db1c9) |
37 |
| -[0] AMD : Spectre |
38 |
| --1- AMD : AMD A10-7850K Radeon R7, 12 Compute Cores 4C+8G |
39 |
| -
|
40 |
| -[5 1 1 1] |
41 |
| -0.4107 |
42 |
| -0.8224 |
43 |
| -0.9518 |
44 |
| -0.1794 |
45 |
| -0.4198 |
46 |
| -
|
47 |
| -Minimum, Maximum: 0.17936542630195618 0.9517996311187744 |
48 |
| -``` |
49 |
| - |
50 |
| -On an NVIDIA GPU: |
| 16 | +## Example |
51 | 17 |
|
| 18 | +```python |
| 19 | +# Monte Carlo estimation of pi |
| 20 | +def calc_pi_device(samples): |
| 21 | + # Simple, array based API |
| 22 | + # Generate uniformly distributed random numers |
| 23 | + x = af.randu(samples) |
| 24 | + y = af.randu(samples) |
| 25 | + # Supports Just In Time Compilation |
| 26 | + # The following line generates a single kernel |
| 27 | + within_unit_circle = (x * x + y * y) < 1 |
| 28 | + # Intuitive function names |
| 29 | + return 4 * af.count(within_unit_circle) / samples |
52 | 30 | ```
|
53 |
| -Using cuda backend |
54 |
| -ArrayFire v3.0.0 (CUDA, 64-bit Linux, build 86426db) |
55 |
| -Platform: CUDA Toolkit 7, Driver: 346.46 |
56 |
| -[0] Tesla K40c, 12288 MB, CUDA Compute 3.5 |
57 |
| --1- GeForce GTX 750, 1024 MB, CUDA Compute 5.0 |
58 |
| -
|
59 |
| -Generate a random matrix a: |
60 |
| -[5 1 1 1] |
61 |
| -0.7402 |
62 |
| -0.9210 |
63 |
| -0.0390 |
64 |
| -0.9690 |
65 |
| -0.9251 |
66 |
| -
|
67 |
| -Minimum, Maximum: 0.039020489901304245 0.9689629077911377 |
68 |
| -``` |
69 |
| - |
70 |
| -Fallback to CPU when CUDA and OpenCL are not availabe: |
71 | 31 |
|
72 |
| -``` |
73 |
| -Using cpu backend |
74 |
| -ArrayFire v3.0.0 (CPU, 64-bit Linux, build 86426db) |
75 |
| -
|
76 |
| -Generate a random matrix a: |
77 |
| -[5 1 1 1] |
78 |
| -0.0000 |
79 |
| -0.1315 |
80 |
| -0.7556 |
81 |
| -0.4587 |
82 |
| -0.5328 |
83 |
| -
|
84 |
| -Minimum, Maximum: 7.825903594493866e-06 0.7556053400039673 |
85 |
| -``` |
86 | 32 |
|
87 | 33 | Choosing a particular backend can be done using `af.backend.set( backend_name )` where backend_name can be one of: "_cuda_", "_opencl_", or "_cpu_". The default device is chosen in the same order of preference.
|
88 | 34 |
|
|
0 commit comments