Skip to content

Commit 298465f

Browse files
committed
Updating the README
- Added documentation link - Fixed the code sample - Removed sample outputs
1 parent 2299b2a commit 298465f

File tree

1 file changed

+15
-69
lines changed

1 file changed

+15
-69
lines changed

README.md

+15-69
Original file line numberDiff line numberDiff line change
@@ -9,80 +9,26 @@
99
| Windows | [![Build Status](http://ci.arrayfire.org/buildStatus/icon?job=arrayfire-wrappers/python-windows)](http://ci.arrayfire.org/view/All/job/arrayfire-wrappers/job/python-windows/) |
1010
| OSX | [![Build Status](http://ci.arrayfire.org/buildStatus/icon?job=arrayfire-wrappers/python-osx)](http://ci.arrayfire.org/view/All/job/arrayfire-wrappers/job/python-osx/) |
1111

12-
## Example
13-
14-
```python
15-
import arrayfire as af
16-
17-
# Display backend information
18-
af.info()
19-
20-
# Generate a uniform random array with a size of 5 elements
21-
a = af.randu(5, 1)
22-
23-
# Print a and its minimum value
24-
af.display(a)
25-
26-
# Print min and max values of a
27-
print("Minimum, Maximum: ", af.min(a), af.max(a))
28-
```
29-
30-
## Sample outputs
12+
## Documentation
3113

32-
On an AMD GPU:
14+
Documentation for this project can be found [over here](http://arrayfire.org/arrayfire-python/).
3315

34-
```
35-
Using opencl backend
36-
ArrayFire v3.0.1 (OpenCL, 64-bit Linux, build 17db1c9)
37-
[0] AMD : Spectre
38-
-1- AMD : AMD A10-7850K Radeon R7, 12 Compute Cores 4C+8G
39-
40-
[5 1 1 1]
41-
0.4107
42-
0.8224
43-
0.9518
44-
0.1794
45-
0.4198
46-
47-
Minimum, Maximum: 0.17936542630195618 0.9517996311187744
48-
```
49-
50-
On an NVIDIA GPU:
16+
## Example
5117

18+
```python
19+
# Monte Carlo estimation of pi
20+
def calc_pi_device(samples):
21+
# Simple, array based API
22+
# Generate uniformly distributed random numers
23+
x = af.randu(samples)
24+
y = af.randu(samples)
25+
# Supports Just In Time Compilation
26+
# The following line generates a single kernel
27+
within_unit_circle = (x * x + y * y) < 1
28+
# Intuitive function names
29+
return 4 * af.count(within_unit_circle) / samples
5230
```
53-
Using cuda backend
54-
ArrayFire v3.0.0 (CUDA, 64-bit Linux, build 86426db)
55-
Platform: CUDA Toolkit 7, Driver: 346.46
56-
[0] Tesla K40c, 12288 MB, CUDA Compute 3.5
57-
-1- GeForce GTX 750, 1024 MB, CUDA Compute 5.0
58-
59-
Generate a random matrix a:
60-
[5 1 1 1]
61-
0.7402
62-
0.9210
63-
0.0390
64-
0.9690
65-
0.9251
66-
67-
Minimum, Maximum: 0.039020489901304245 0.9689629077911377
68-
```
69-
70-
Fallback to CPU when CUDA and OpenCL are not availabe:
7131

72-
```
73-
Using cpu backend
74-
ArrayFire v3.0.0 (CPU, 64-bit Linux, build 86426db)
75-
76-
Generate a random matrix a:
77-
[5 1 1 1]
78-
0.0000
79-
0.1315
80-
0.7556
81-
0.4587
82-
0.5328
83-
84-
Minimum, Maximum: 7.825903594493866e-06 0.7556053400039673
85-
```
8632

8733
Choosing a particular backend can be done using `af.backend.set( backend_name )` where backend_name can be one of: "_cuda_", "_opencl_", or "_cpu_". The default device is chosen in the same order of preference.
8834

0 commit comments

Comments
 (0)