-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparser_transitions.py
343 lines (302 loc) · 13.1 KB
/
parser_transitions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
CS224N 2021-2022: Homework 3
parser_transitions.py: Algorithms for completing partial parsess.
Sahil Chopra <[email protected]>
Haoshen Hong <[email protected]>
"""
import sys
from parser_model import ParserModel
class PartialParse(object):
def __init__(self, sentence):
"""Initializes this partial parse.
@param sentence (list of str): The sentence to be parsed as a list of words.
Your code should not modify the sentence.
"""
# The sentence being parsed is kept for bookkeeping purposes. Do NOT alter it in your code.
self.sentence = sentence
### YOUR CODE HERE (3 Lines)
### Your code should initialize the following fields:
### self.stack: The current stack represented as a list with the top of the stack as the
### last element of the list.
### self.buffer: The current buffer represented as a list with the first item on the
### buffer as the first item of the list
### self.dependencies: The list of dependencies produced so far. Represented as a list of
### tuples where each tuple is of the form (head, dependent).
### Order for this list doesn't matter.
###
### Note: The root token should be represented with the string "ROOT"
### Note: If you need to use the sentence object to initialize anything, make sure to not directly
### reference the sentence object. That is, remember to NOT modify the sentence object.
self.stack = ["ROOT"]
self.buffer = sentence.copy()
self.dependencies = []
### END YOUR CODE
def parse_step(self, transition):
"""Performs a single parse step by applying the given transition to this partial parse
@param transition (str): A string that equals "S", "LA", or "RA" representing the shift,
left-arc, and right-arc transitions. You can assume the provided
transition is a legal transition.
"""
### YOUR CODE HERE (~7-12 Lines)
### TODO:
### Implement a single parsing step, i.e. the logic for the following as
### described in the pdf handout:
### 1. Shift
### 2. Left Arc
### 3. Right Arc
if transition == "S":
self.stack.append(self.buffer.pop(0))
elif transition == "LA":
head = self.stack[-1]
dependent = self.stack.pop(-2)
self.dependencies.append((head, dependent))
elif transition == "RA":
head = self.stack[-2]
dependent = self.stack.pop(-1)
self.dependencies.append((head, dependent))
else:
raise RuntimeError("unknown transition string")
### END YOUR CODE
def parse(self, transitions):
"""Applies the provided transitions to this PartialParse
@param transitions (list of str): The list of transitions in the order they should be applied
@return dependencies (list of string tuples): The list of dependencies produced when
parsing the sentence. Represented as a list of
tuples where each tuple is of the form (head, dependent).
"""
for transition in transitions:
self.parse_step(transition)
return self.dependencies
def minibatch_parse(sentences, model: ParserModel, batch_size):
"""Parses a list of sentences in minibatches using a model.
@param sentences (list of list of str): A list of sentences to be parsed
(each sentence is a list of words and each word is of type string)
@param model (ParserModel): The model that makes parsing decisions. It is assumed to have a function
model.predict(partial_parses) that takes in a list of PartialParses as input and
returns a list of transitions predicted for each parse. That is, after calling
transitions = model.predict(partial_parses)
transitions[i] will be the next transition to apply to partial_parses[i].
@param batch_size (int): The number of PartialParses to include in each minibatch
@return dependencies (list of dependency lists): A list where each element is the dependencies
list for a parsed sentence. Ordering should be the
same as in sentences (i.e., dependencies[i] should
contain the parse for sentences[i]).
"""
dependencies = []
### YOUR CODE HERE (~8-10 Lines)
### TODO:
### Implement the minibatch parse algorithm. Note that the pseudocode for this algorithm is given in the pdf handout.
###
### Note: A shallow copy (as denoted in the PDF) can be made with the "=" sign in python, e.g.
### unfinished_parses = partial_parses[:].
### Here `unfinished_parses` is a shallow copy of `partial_parses`.
### In Python, a shallow copied list like `unfinished_parses` does not contain new instances
### of the object stored in `partial_parses`. Rather both lists refer to the same objects.
### In our case, `partial_parses` contains a list of partial parses. `unfinished_parses`
### contains references to the same objects. Thus, you should NOT use the `del` operator
### to remove objects from the `unfinished_parses` list. This will free the underlying memory that
### is being accessed by `partial_parses` and may cause your code to crash.
# 1. Initialize partial_parses as a list of PartialParses, one for each sentence in sentences
partial_parses = [PartialParse(sentence=sentence) for sentence in sentences]
# 2. Initialize unfinished parses as a shallow copy of partial parses
unfinished_parses = partial_parses[:]
# 3. while unfinished parses is not empty do
while unfinished_parses:
# 4. Take the first batch size parses in unfinished parses as a minibatch
minibatch = unfinished_parses[:batch_size]
# 5. Use the model to predict the next transition for each partial parse in the minibatch
transitions = model.predict(minibatch)
# 6. Perform a parse step on each partial parse in the minibatch with its predicted transition
for i, transition in enumerate(transitions):
minibatch[i].parse_step(transition=transition)
# for index, parse in enumerate(minibatch):
# parse.parse_step(transition=transitions[index])
# 7. Remove the completed (empty buffer and stack of size 1) parses from unfinished parses
if len(minibatch[i].buffer) == 0 and len(minibatch[i].stack) == 1:
unfinished_parses.remove(minibatch[i])
dependencies = [partial_parse.dependencies for partial_parse in partial_parses]
### QSTS: should I put the just parsed sentences at the back of the list to prevent working on the same sentences?
### END YOUR CODE
return dependencies
def test_step(name, transition, stack, buf, deps, ex_stack, ex_buf, ex_deps):
"""Tests that a single parse step returns the expected output"""
pp = PartialParse([])
pp.stack, pp.buffer, pp.dependencies = stack, buf, deps
pp.parse_step(transition)
stack, buf, deps = (
tuple(pp.stack),
tuple(pp.buffer),
tuple(sorted(pp.dependencies)),
)
assert stack == ex_stack, "{:} test resulted in stack {:}, expected {:}".format(
name, stack, ex_stack
)
assert buf == ex_buf, "{:} test resulted in buffer {:}, expected {:}".format(
name, buf, ex_buf
)
assert (
deps == ex_deps
), "{:} test resulted in dependency list {:}, expected {:}".format(
name, deps, ex_deps
)
print("{:} test passed!".format(name))
def test_parse_step():
"""Simple tests for the PartialParse.parse_step function
Warning: these are not exhaustive
"""
test_step(
"SHIFT",
"S",
["ROOT", "the"],
["cat", "sat"],
[],
("ROOT", "the", "cat"),
("sat",),
(),
)
test_step(
"LEFT-ARC",
"LA",
["ROOT", "the", "cat"],
["sat"],
[],
(
"ROOT",
"cat",
),
("sat",),
(("cat", "the"),),
)
test_step(
"RIGHT-ARC",
"RA",
["ROOT", "run", "fast"],
[],
[],
(
"ROOT",
"run",
),
(),
(("run", "fast"),),
)
def test_parse():
"""Simple tests for the PartialParse.parse function
Warning: these are not exhaustive
"""
sentence = ["parse", "this", "sentence"]
dependencies = PartialParse(sentence).parse(["S", "S", "S", "LA", "RA", "RA"])
dependencies = tuple(sorted(dependencies))
expected = (("ROOT", "parse"), ("parse", "sentence"), ("sentence", "this"))
assert (
dependencies == expected
), "parse test resulted in dependencies {:}, expected {:}".format(
dependencies, expected
)
assert tuple(sentence) == (
"parse",
"this",
"sentence",
), "parse test failed: the input sentence should not be modified"
print("parse test passed!")
class DummyModel(object):
"""Dummy model for testing the minibatch_parse function"""
def __init__(self, mode="unidirectional"):
self.mode = mode
def predict(self, partial_parses):
if self.mode == "unidirectional":
return self.unidirectional_predict(partial_parses)
elif self.mode == "interleave":
return self.interleave_predict(partial_parses)
else:
raise NotImplementedError()
def unidirectional_predict(self, partial_parses):
"""First shifts everything onto the stack and then does exclusively right arcs if the first word of
the sentence is "right", "left" if otherwise.
"""
return [
("RA" if pp.stack[1] is "right" else "LA") if len(pp.buffer) == 0 else "S"
for pp in partial_parses
]
def interleave_predict(self, partial_parses):
"""First shifts everything onto the stack and then interleaves "right" and "left"."""
return [
("RA" if len(pp.stack) % 2 == 0 else "LA") if len(pp.buffer) == 0 else "S"
for pp in partial_parses
]
def test_dependencies(name, deps, ex_deps):
"""Tests the provided dependencies match the expected dependencies"""
deps = tuple(sorted(deps))
assert (
deps == ex_deps
), "{:} test resulted in dependency list {:}, expected {:}".format(
name, deps, ex_deps
)
def test_minibatch_parse():
"""Simple tests for the minibatch_parse function
Warning: these are not exhaustive
"""
# Unidirectional arcs test
sentences = [
["right", "arcs", "only"],
["right", "arcs", "only", "again"],
["left", "arcs", "only"],
["left", "arcs", "only", "again"],
]
deps = minibatch_parse(sentences, DummyModel(), 2)
test_dependencies(
"minibatch_parse",
deps[0],
(("ROOT", "right"), ("arcs", "only"), ("right", "arcs")),
)
test_dependencies(
"minibatch_parse",
deps[1],
(("ROOT", "right"), ("arcs", "only"), ("only", "again"), ("right", "arcs")),
)
test_dependencies(
"minibatch_parse",
deps[2],
(("only", "ROOT"), ("only", "arcs"), ("only", "left")),
)
test_dependencies(
"minibatch_parse",
deps[3],
(("again", "ROOT"), ("again", "arcs"), ("again", "left"), ("again", "only")),
)
# Out-of-bound test
sentences = [["right"]]
deps = minibatch_parse(sentences, DummyModel(), 2)
test_dependencies("minibatch_parse", deps[0], (("ROOT", "right"),))
# Mixed arcs test
sentences = [["this", "is", "interleaving", "dependency", "test"]]
deps = minibatch_parse(sentences, DummyModel(mode="interleave"), 1)
test_dependencies(
"minibatch_parse",
deps[0],
(
("ROOT", "is"),
("dependency", "interleaving"),
("dependency", "test"),
("is", "dependency"),
("is", "this"),
),
)
print("minibatch_parse test passed!")
if __name__ == "__main__":
args = sys.argv
if len(args) != 2:
raise Exception(
"You did not provide a valid keyword. Either provide 'part_c' or 'part_d', when executing this script"
)
elif args[1] == "part_c":
test_parse_step()
test_parse()
elif args[1] == "part_d":
test_minibatch_parse()
else:
raise Exception(
"You did not provide a valid keyword. Either provide 'part_c' or 'part_d', when executing this script"
)