-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_rt.py
59 lines (47 loc) · 1.67 KB
/
test_rt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# test_real_time.py
import torch
import cv2
from torchvision import transforms
from PIL import Image
from simple_cnn import SimpleCNN
# Parameters
model_path = "gesture_model.pth"
input_size = 224 # Image size expected by the model
num_classes = 5 # Adjust based on your dataset
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Transformations
transform = transforms.Compose([
transforms.Resize((input_size, input_size)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# Load model
model = SimpleCNN(num_classes=num_classes)
model.load_state_dict(torch.load(model_path, map_location=device))
model.to(device)
model.eval()
# Class labels
class_labels = ['Gesture1', 'Gesture2', 'Gesture3', 'Gesture4', 'Gesture5', # Update with actual class names
'Gesture6', 'Gesture7', 'Gesture8', 'Gesture9', 'Gesture10']
# Start webcam
cap = cv2.VideoCapture(0)
while True:
ret, frame = cap.read()
if not ret:
break
# Convert frame to PIL Image
pil_image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
input_image = transform(pil_image).unsqueeze(0).to(device)
# Prediction
with torch.no_grad():
output = model(input_image)
_, predicted = torch.max(output, 1)
predicted_label = class_labels[predicted.item()]
# Display the prediction
cv2.putText(frame, f'Prediction: {predicted_label}', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, cv2.LINE_AA)
cv2.imshow("Gesture Recognition", frame)
# Press 'q' to exit
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()