-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
144 lines (111 loc) · 4.83 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms
from gesture_dataset import GestureDataset
from simple_cnn import SimpleCNN
from utils import create_dataloaders
def train_model(model, train_loader, val_loader, criterion, optimizer, scheduler, num_epochs, device, early_stopping_patience=3):
best_val_loss = float('inf')
patience_counter = 0
for epoch in range(num_epochs):
print(f"Epoch {epoch+1}/{num_epochs}")
print("-" * 10)
# Training phase
model.train()
running_loss = 0.0
running_corrects = 0
for inputs, labels in train_loader:
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
_, preds = torch.max(outputs, 1)
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / len(train_loader.dataset)
epoch_acc = running_corrects.double() / len(train_loader.dataset)
print(f"Train Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}")
# Validation phase
model.eval()
running_loss = 0.0
running_corrects = 0
with torch.no_grad():
for inputs, labels in val_loader:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
loss = criterion(outputs, labels)
_, preds = torch.max(outputs, 1)
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
val_loss = running_loss / len(val_loader.dataset)
val_acc = running_corrects.double() / len(val_loader.dataset)
print(f"Val Loss: {val_loss:.4f} Acc: {val_acc:.4f}")
# Check for early stopping
if val_loss < best_val_loss:
best_val_loss = val_loss
patience_counter = 0
torch.save(model.state_dict(), 'best_model2.pth')
else:
patience_counter += 1
if patience_counter >= early_stopping_patience:
print("Early stopping triggered")
break
# Adjust learning rate
scheduler.step()
return model
def evaluate_model(model, test_loader, criterion, device):
model.eval()
running_loss = 0.0
running_corrects = 0
with torch.no_grad():
for inputs, labels in test_loader:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
loss = criterion(outputs, labels)
_, preds = torch.max(outputs, 1)
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
test_loss = running_loss / len(test_loader.dataset)
test_acc = running_corrects.double() / len(test_loader.dataset)
print(f"Test Loss: {test_loss:.4f} Acc: {test_acc:.4f}")
if __name__ == "__main__":
# Parameters
data_dir = "processed_videos"
batch_size = 32
num_epochs = 50 # Increased epochs to allow for early stopping
learning_rate = 0.0001
# Data transformations with augmentation
transform = transforms.Compose([
transforms.RandomResizedCrop(224), # Randomly crop and resize images
transforms.RandomHorizontalFlip(), # Randomly flip images horizontally
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# Dataset and DataLoader
dataset = GestureDataset(data_dir, transform=transform)
train_loader, val_loader, test_loader = create_dataloaders(dataset, batch_size)
# Model
num_classes = len(dataset.classes)
model = SimpleCNN(num_classes=num_classes)
# Add dropout layers in SimpleCNN and L2 regularization in optimizer (if not done already)
# Loss function, optimizer, scheduler
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=0.01) # L2 regularization
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)
# Device configuration
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
# Train the model
model = train_model(model, train_loader, val_loader, criterion, optimizer, scheduler, num_epochs, device)
# Load the best model and evaluate on the test set
model.load_state_dict(torch.load('best_model2.pth'))
evaluate_model(model, test_loader, criterion, device)
# Save the trained model
print("Training complete. Saving the final model.")
torch.save(model.state_dict(), 'final_model2.pth')