-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptions.py
executable file
·35 lines (32 loc) · 2.03 KB
/
options.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import argparse
import pprint
import sys
import datetime
def load_arguments():
parser = argparse.ArgumentParser(sys.argv[0], description='VAE MNIST Example')
parser.add_argument('--batch-size', type=int, default=128, metavar='N',
help='input batch size for training (default: 128)')
parser.add_argument('--source', type=str, default='fashionMnist',
help='From mnist to fashionMnist or otherwise (default: fashionMnist)')
parser.add_argument('--graph_name', type=str, default='', help='Graph environment name (default: dateAndTime)')
parser.add_argument('--one_sided', action='store_true', default=False, help='Do not train target domain')
parser.add_argument('--epochs', type=int, default=200, metavar='N', help='number of epochs to train (default: 10)')
parser.add_argument('--no-cuda', action='store_true', default=False, help='enables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--resume', action='store_true', default=False, help='resume the model (default: False)')
parser.add_argument('--lr', type=float, default=0.0001, help='learning rate (default: 0.0001)')
parser.add_argument('--model_target_path', type=str, default='')
parser.add_argument('--model_source_path', type=str, default='')
parser.add_argument('--h_tg', type=int, default=1, help='hyper parameter target generator loss (default: 1)')
parser.add_argument('--apply_source_to_discriminator', action='store_true', default=False,
help='Apply discriminator loss to source')
args = parser.parse_args()
if not args.graph_name:
args.graph_name = datetime.datetime.now().strftime("%d-%m_%H:%M")
print('-' * 10)
pp = pprint.PrettyPrinter(indent=4)
pp.pprint(vars(args))
print('-' * 10)
return args