forked from data-apis/array-api-compat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_linalg.py
158 lines (130 loc) · 6.13 KB
/
_linalg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from __future__ import annotations
from typing import TYPE_CHECKING, NamedTuple
if TYPE_CHECKING:
from typing import Literal, Optional, Tuple, Union
from ._typing import ndarray
import numpy as np
if np.__version__[0] == "2":
from numpy.lib.array_utils import normalize_axis_tuple
else:
from numpy.core.numeric import normalize_axis_tuple
from ._aliases import matmul, matrix_transpose, tensordot, vecdot, isdtype
from .._internal import get_xp
# These are in the main NumPy namespace but not in numpy.linalg
def cross(x1: ndarray, x2: ndarray, /, xp, *, axis: int = -1, **kwargs) -> ndarray:
return xp.cross(x1, x2, axis=axis, **kwargs)
def outer(x1: ndarray, x2: ndarray, /, xp, **kwargs) -> ndarray:
return xp.outer(x1, x2, **kwargs)
class EighResult(NamedTuple):
eigenvalues: ndarray
eigenvectors: ndarray
class QRResult(NamedTuple):
Q: ndarray
R: ndarray
class SlogdetResult(NamedTuple):
sign: ndarray
logabsdet: ndarray
class SVDResult(NamedTuple):
U: ndarray
S: ndarray
Vh: ndarray
# These functions are the same as their NumPy counterparts except they return
# a namedtuple.
def eigh(x: ndarray, /, xp, **kwargs) -> EighResult:
return EighResult(*xp.linalg.eigh(x, **kwargs))
def qr(x: ndarray, /, xp, *, mode: Literal['reduced', 'complete'] = 'reduced',
**kwargs) -> QRResult:
return QRResult(*xp.linalg.qr(x, mode=mode, **kwargs))
def slogdet(x: ndarray, /, xp, **kwargs) -> SlogdetResult:
return SlogdetResult(*xp.linalg.slogdet(x, **kwargs))
def svd(x: ndarray, /, xp, *, full_matrices: bool = True, **kwargs) -> SVDResult:
return SVDResult(*xp.linalg.svd(x, full_matrices=full_matrices, **kwargs))
# These functions have additional keyword arguments
# The upper keyword argument is new from NumPy
def cholesky(x: ndarray, /, xp, *, upper: bool = False, **kwargs) -> ndarray:
L = xp.linalg.cholesky(x, **kwargs)
if upper:
U = get_xp(xp)(matrix_transpose)(L)
if get_xp(xp)(isdtype)(U.dtype, 'complex floating'):
U = xp.conj(U)
return U
return L
# The rtol keyword argument of matrix_rank() and pinv() is new from NumPy.
# Note that it has a different semantic meaning from tol and rcond.
def matrix_rank(x: ndarray,
/,
xp,
*,
rtol: Optional[Union[float, ndarray]] = None,
**kwargs) -> ndarray:
# this is different from xp.linalg.matrix_rank, which supports 1
# dimensional arrays.
if x.ndim < 2:
raise xp.linalg.LinAlgError("1-dimensional array given. Array must be at least two-dimensional")
S = get_xp(xp)(svdvals)(x, **kwargs)
if rtol is None:
tol = S.max(axis=-1, keepdims=True) * max(x.shape[-2:]) * xp.finfo(S.dtype).eps
else:
# this is different from xp.linalg.matrix_rank, which does not
# multiply the tolerance by the largest singular value.
tol = S.max(axis=-1, keepdims=True)*xp.asarray(rtol)[..., xp.newaxis]
return xp.count_nonzero(S > tol, axis=-1)
def pinv(x: ndarray, /, xp, *, rtol: Optional[Union[float, ndarray]] = None, **kwargs) -> ndarray:
# this is different from xp.linalg.pinv, which does not multiply the
# default tolerance by max(M, N).
if rtol is None:
rtol = max(x.shape[-2:]) * xp.finfo(x.dtype).eps
return xp.linalg.pinv(x, rcond=rtol, **kwargs)
# These functions are new in the array API spec
def matrix_norm(x: ndarray, /, xp, *, keepdims: bool = False, ord: Optional[Union[int, float, Literal['fro', 'nuc']]] = 'fro') -> ndarray:
return xp.linalg.norm(x, axis=(-2, -1), keepdims=keepdims, ord=ord)
# svdvals is not in NumPy (but it is in SciPy). It is equivalent to
# xp.linalg.svd(compute_uv=False).
def svdvals(x: ndarray, /, xp) -> Union[ndarray, Tuple[ndarray, ...]]:
return xp.linalg.svd(x, compute_uv=False)
def vector_norm(x: ndarray, /, xp, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False, ord: Optional[Union[int, float]] = 2) -> ndarray:
# xp.linalg.norm tries to do a matrix norm whenever axis is a 2-tuple or
# when axis=None and the input is 2-D, so to force a vector norm, we make
# it so the input is 1-D (for axis=None), or reshape so that norm is done
# on a single dimension.
if axis is None:
# Note: xp.linalg.norm() doesn't handle 0-D arrays
x = x.ravel()
_axis = 0
elif isinstance(axis, tuple):
# Note: The axis argument supports any number of axes, whereas
# xp.linalg.norm() only supports a single axis for vector norm.
normalized_axis = normalize_axis_tuple(axis, x.ndim)
rest = tuple(i for i in range(x.ndim) if i not in normalized_axis)
newshape = axis + rest
x = xp.transpose(x, newshape).reshape(
(xp.prod([x.shape[i] for i in axis], dtype=int), *[x.shape[i] for i in rest]))
_axis = 0
else:
_axis = axis
res = xp.linalg.norm(x, axis=_axis, ord=ord)
if keepdims:
# We can't reuse xp.linalg.norm(keepdims) because of the reshape hacks
# above to avoid matrix norm logic.
shape = list(x.shape)
_axis = normalize_axis_tuple(range(x.ndim) if axis is None else axis, x.ndim)
for i in _axis:
shape[i] = 1
res = xp.reshape(res, tuple(shape))
return res
# xp.diagonal and xp.trace operate on the first two axes whereas these
# operates on the last two
def diagonal(x: ndarray, /, xp, *, offset: int = 0, **kwargs) -> ndarray:
return xp.diagonal(x, offset=offset, axis1=-2, axis2=-1, **kwargs)
def trace(x: ndarray, /, xp, *, offset: int = 0, dtype=None, **kwargs) -> ndarray:
if dtype is None:
if x.dtype == xp.float32:
dtype = xp.float64
elif x.dtype == xp.complex64:
dtype = xp.complex128
return xp.asarray(xp.trace(x, offset=offset, dtype=dtype, axis1=-2, axis2=-1, **kwargs))
__all__ = ['cross', 'matmul', 'outer', 'tensordot', 'EighResult',
'QRResult', 'SlogdetResult', 'SVDResult', 'eigh', 'qr', 'slogdet',
'svd', 'cholesky', 'matrix_rank', 'pinv', 'matrix_norm',
'matrix_transpose', 'svdvals', 'vecdot', 'vector_norm', 'diagonal',
'trace']