forked from data-apis/array-api-strict
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path_elementwise_functions.py
900 lines (705 loc) · 31 KB
/
_elementwise_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
from __future__ import annotations
from ._dtypes import (
_boolean_dtypes,
_floating_dtypes,
_real_floating_dtypes,
_complex_floating_dtypes,
_integer_dtypes,
_integer_or_boolean_dtypes,
_real_numeric_dtypes,
_numeric_dtypes,
_result_type,
)
from ._array_object import Array
from ._flags import requires_api_version
from ._creation_functions import asarray
from typing import Optional, Union
import numpy as np
def abs(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.abs <numpy.abs>`.
See its docstring for more information.
"""
if x.dtype not in _numeric_dtypes:
raise TypeError("Only numeric dtypes are allowed in abs")
return Array._new(np.abs(x._array))
# Note: the function name is different here
def acos(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.arccos <numpy.arccos>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in acos")
return Array._new(np.arccos(x._array))
# Note: the function name is different here
def acosh(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.arccosh <numpy.arccosh>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in acosh")
return Array._new(np.arccosh(x._array))
def add(x1: Array, x2: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.add <numpy.add>`.
See its docstring for more information.
"""
if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
raise TypeError("Only numeric dtypes are allowed in add")
# Call result type here just to raise on disallowed type combinations
_result_type(x1.dtype, x2.dtype)
x1, x2 = Array._normalize_two_args(x1, x2)
return Array._new(np.add(x1._array, x2._array))
# Note: the function name is different here
def asin(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.arcsin <numpy.arcsin>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in asin")
return Array._new(np.arcsin(x._array))
# Note: the function name is different here
def asinh(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.arcsinh <numpy.arcsinh>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in asinh")
return Array._new(np.arcsinh(x._array))
# Note: the function name is different here
def atan(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.arctan <numpy.arctan>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in atan")
return Array._new(np.arctan(x._array))
# Note: the function name is different here
def atan2(x1: Array, x2: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.arctan2 <numpy.arctan2>`.
See its docstring for more information.
"""
if x1.dtype not in _real_floating_dtypes or x2.dtype not in _real_floating_dtypes:
raise TypeError("Only real floating-point dtypes are allowed in atan2")
# Call result type here just to raise on disallowed type combinations
_result_type(x1.dtype, x2.dtype)
x1, x2 = Array._normalize_two_args(x1, x2)
return Array._new(np.arctan2(x1._array, x2._array))
# Note: the function name is different here
def atanh(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.arctanh <numpy.arctanh>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in atanh")
return Array._new(np.arctanh(x._array))
def bitwise_and(x1: Array, x2: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.bitwise_and <numpy.bitwise_and>`.
See its docstring for more information.
"""
if (
x1.dtype not in _integer_or_boolean_dtypes
or x2.dtype not in _integer_or_boolean_dtypes
):
raise TypeError("Only integer or boolean dtypes are allowed in bitwise_and")
# Call result type here just to raise on disallowed type combinations
_result_type(x1.dtype, x2.dtype)
x1, x2 = Array._normalize_two_args(x1, x2)
return Array._new(np.bitwise_and(x1._array, x2._array))
# Note: the function name is different here
def bitwise_left_shift(x1: Array, x2: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.left_shift <numpy.left_shift>`.
See its docstring for more information.
"""
if x1.dtype not in _integer_dtypes or x2.dtype not in _integer_dtypes:
raise TypeError("Only integer dtypes are allowed in bitwise_left_shift")
# Call result type here just to raise on disallowed type combinations
_result_type(x1.dtype, x2.dtype)
x1, x2 = Array._normalize_two_args(x1, x2)
# Note: bitwise_left_shift is only defined for x2 nonnegative.
if np.any(x2._array < 0):
raise ValueError("bitwise_left_shift(x1, x2) is only defined for x2 >= 0")
return Array._new(np.left_shift(x1._array, x2._array))
# Note: the function name is different here
def bitwise_invert(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.invert <numpy.invert>`.
See its docstring for more information.
"""
if x.dtype not in _integer_or_boolean_dtypes:
raise TypeError("Only integer or boolean dtypes are allowed in bitwise_invert")
return Array._new(np.invert(x._array))
def bitwise_or(x1: Array, x2: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.bitwise_or <numpy.bitwise_or>`.
See its docstring for more information.
"""
if (
x1.dtype not in _integer_or_boolean_dtypes
or x2.dtype not in _integer_or_boolean_dtypes
):
raise TypeError("Only integer or boolean dtypes are allowed in bitwise_or")
# Call result type here just to raise on disallowed type combinations
_result_type(x1.dtype, x2.dtype)
x1, x2 = Array._normalize_two_args(x1, x2)
return Array._new(np.bitwise_or(x1._array, x2._array))
# Note: the function name is different here
def bitwise_right_shift(x1: Array, x2: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.right_shift <numpy.right_shift>`.
See its docstring for more information.
"""
if x1.dtype not in _integer_dtypes or x2.dtype not in _integer_dtypes:
raise TypeError("Only integer dtypes are allowed in bitwise_right_shift")
# Call result type here just to raise on disallowed type combinations
_result_type(x1.dtype, x2.dtype)
x1, x2 = Array._normalize_two_args(x1, x2)
# Note: bitwise_right_shift is only defined for x2 nonnegative.
if np.any(x2._array < 0):
raise ValueError("bitwise_right_shift(x1, x2) is only defined for x2 >= 0")
return Array._new(np.right_shift(x1._array, x2._array))
def bitwise_xor(x1: Array, x2: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.bitwise_xor <numpy.bitwise_xor>`.
See its docstring for more information.
"""
if (
x1.dtype not in _integer_or_boolean_dtypes
or x2.dtype not in _integer_or_boolean_dtypes
):
raise TypeError("Only integer or boolean dtypes are allowed in bitwise_xor")
# Call result type here just to raise on disallowed type combinations
_result_type(x1.dtype, x2.dtype)
x1, x2 = Array._normalize_two_args(x1, x2)
return Array._new(np.bitwise_xor(x1._array, x2._array))
def ceil(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.ceil <numpy.ceil>`.
See its docstring for more information.
"""
if x.dtype not in _real_numeric_dtypes:
raise TypeError("Only real numeric dtypes are allowed in ceil")
if x.dtype in _integer_dtypes:
# Note: The return dtype of ceil is the same as the input
return x
return Array._new(np.ceil(x._array))
# WARNING: This function is not yet tested by the array-api-tests test suite.
# Note: min and max argument names are different and not optional in numpy.
@requires_api_version('2023.12')
def clip(
x: Array,
/,
min: Optional[Union[int, float, Array]] = None,
max: Optional[Union[int, float, Array]] = None,
) -> Array:
"""
Array API compatible wrapper for :py:func:`np.clip <numpy.clip>`.
See its docstring for more information.
"""
if (x.dtype not in _real_numeric_dtypes
or isinstance(min, Array) and min.dtype not in _real_numeric_dtypes
or isinstance(max, Array) and max.dtype not in _real_numeric_dtypes):
raise TypeError("Only real numeric dtypes are allowed in clip")
if not isinstance(min, (int, float, Array, type(None))):
raise TypeError("min must be an None, int, float, or an array")
if not isinstance(max, (int, float, Array, type(None))):
raise TypeError("max must be an None, int, float, or an array")
# Mixed dtype kinds is implementation defined
if (x.dtype in _integer_dtypes
and (isinstance(min, float) or
isinstance(min, Array) and min.dtype in _real_floating_dtypes)):
raise TypeError("min must be integral when x is integral")
if (x.dtype in _integer_dtypes
and (isinstance(max, float) or
isinstance(max, Array) and max.dtype in _real_floating_dtypes)):
raise TypeError("max must be integral when x is integral")
if (x.dtype in _real_floating_dtypes
and (isinstance(min, int) or
isinstance(min, Array) and min.dtype in _integer_dtypes)):
raise TypeError("min must be floating-point when x is floating-point")
if (x.dtype in _real_floating_dtypes
and (isinstance(max, int) or
isinstance(max, Array) and max.dtype in _integer_dtypes)):
raise TypeError("max must be floating-point when x is floating-point")
if min is max is None:
# Note: NumPy disallows min = max = None
return x
# Normalize to make the below logic simpler
if min is not None:
min = asarray(min)._array
if max is not None:
max = asarray(max)._array
# min > max is implementation defined
if min is not None and max is not None and np.any(min > max):
raise ValueError("min must be less than or equal to max")
result = np.clip(x._array, min, max)
# Note: NumPy applies type promotion, but the standard specifies the
# return dtype should be the same as x
if result.dtype != x.dtype._np_dtype:
# TODO: I'm not completely sure this always gives the correct thing
# for integer dtypes. See https://github.com/numpy/numpy/issues/24976
result = result.astype(x.dtype._np_dtype)
return Array._new(result)
def conj(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.conj <numpy.conj>`.
See its docstring for more information.
"""
if x.dtype not in _complex_floating_dtypes:
raise TypeError("Only complex floating-point dtypes are allowed in conj")
return Array._new(np.conj(x._array))
@requires_api_version('2023.12')
def copysign(x1: Array, x2: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.copysign <numpy.copysign>`.
See its docstring for more information.
"""
if x1.dtype not in _real_numeric_dtypes or x2.dtype not in _real_numeric_dtypes:
raise TypeError("Only real numeric dtypes are allowed in copysign")
# Call result type here just to raise on disallowed type combinations
_result_type(x1.dtype, x2.dtype)
x1, x2 = Array._normalize_two_args(x1, x2)
return Array._new(np.copysign(x1._array, x2._array))
def cos(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.cos <numpy.cos>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in cos")
return Array._new(np.cos(x._array))
def cosh(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.cosh <numpy.cosh>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in cosh")
return Array._new(np.cosh(x._array))
def divide(x1: Array, x2: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.divide <numpy.divide>`.
See its docstring for more information.
"""
if x1.dtype not in _floating_dtypes or x2.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in divide")
# Call result type here just to raise on disallowed type combinations
_result_type(x1.dtype, x2.dtype)
x1, x2 = Array._normalize_two_args(x1, x2)
return Array._new(np.divide(x1._array, x2._array))
def equal(x1: Array, x2: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.equal <numpy.equal>`.
See its docstring for more information.
"""
# Call result type here just to raise on disallowed type combinations
_result_type(x1.dtype, x2.dtype)
x1, x2 = Array._normalize_two_args(x1, x2)
return Array._new(np.equal(x1._array, x2._array))
def exp(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.exp <numpy.exp>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in exp")
return Array._new(np.exp(x._array))
def expm1(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.expm1 <numpy.expm1>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in expm1")
return Array._new(np.expm1(x._array))
def floor(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.floor <numpy.floor>`.
See its docstring for more information.
"""
if x.dtype not in _real_numeric_dtypes:
raise TypeError("Only real numeric dtypes are allowed in floor")
if x.dtype in _integer_dtypes:
# Note: The return dtype of floor is the same as the input
return x
return Array._new(np.floor(x._array))
def floor_divide(x1: Array, x2: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.floor_divide <numpy.floor_divide>`.
See its docstring for more information.
"""
if x1.dtype not in _real_numeric_dtypes or x2.dtype not in _real_numeric_dtypes:
raise TypeError("Only real numeric dtypes are allowed in floor_divide")
# Call result type here just to raise on disallowed type combinations
_result_type(x1.dtype, x2.dtype)
x1, x2 = Array._normalize_two_args(x1, x2)
return Array._new(np.floor_divide(x1._array, x2._array))
def greater(x1: Array, x2: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.greater <numpy.greater>`.
See its docstring for more information.
"""
if x1.dtype not in _real_numeric_dtypes or x2.dtype not in _real_numeric_dtypes:
raise TypeError("Only real numeric dtypes are allowed in greater")
# Call result type here just to raise on disallowed type combinations
_result_type(x1.dtype, x2.dtype)
x1, x2 = Array._normalize_two_args(x1, x2)
return Array._new(np.greater(x1._array, x2._array))
def greater_equal(x1: Array, x2: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.greater_equal <numpy.greater_equal>`.
See its docstring for more information.
"""
if x1.dtype not in _real_numeric_dtypes or x2.dtype not in _real_numeric_dtypes:
raise TypeError("Only real numeric dtypes are allowed in greater_equal")
# Call result type here just to raise on disallowed type combinations
_result_type(x1.dtype, x2.dtype)
x1, x2 = Array._normalize_two_args(x1, x2)
return Array._new(np.greater_equal(x1._array, x2._array))
@requires_api_version('2023.12')
def hypot(x1: Array, x2: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.hypot <numpy.hypot>`.
See its docstring for more information.
"""
if x1.dtype not in _real_floating_dtypes or x2.dtype not in _real_floating_dtypes:
raise TypeError("Only real floating-point dtypes are allowed in hypot")
# Call result type here just to raise on disallowed type combinations
_result_type(x1.dtype, x2.dtype)
x1, x2 = Array._normalize_two_args(x1, x2)
return Array._new(np.hypot(x1._array, x2._array))
def imag(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.imag <numpy.imag>`.
See its docstring for more information.
"""
if x.dtype not in _complex_floating_dtypes:
raise TypeError("Only complex floating-point dtypes are allowed in imag")
return Array._new(np.imag(x._array))
def isfinite(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.isfinite <numpy.isfinite>`.
See its docstring for more information.
"""
if x.dtype not in _numeric_dtypes:
raise TypeError("Only numeric dtypes are allowed in isfinite")
return Array._new(np.isfinite(x._array))
def isinf(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.isinf <numpy.isinf>`.
See its docstring for more information.
"""
if x.dtype not in _numeric_dtypes:
raise TypeError("Only numeric dtypes are allowed in isinf")
return Array._new(np.isinf(x._array))
def isnan(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.isnan <numpy.isnan>`.
See its docstring for more information.
"""
if x.dtype not in _numeric_dtypes:
raise TypeError("Only numeric dtypes are allowed in isnan")
return Array._new(np.isnan(x._array))
def less(x1: Array, x2: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.less <numpy.less>`.
See its docstring for more information.
"""
if x1.dtype not in _real_numeric_dtypes or x2.dtype not in _real_numeric_dtypes:
raise TypeError("Only real numeric dtypes are allowed in less")
# Call result type here just to raise on disallowed type combinations
_result_type(x1.dtype, x2.dtype)
x1, x2 = Array._normalize_two_args(x1, x2)
return Array._new(np.less(x1._array, x2._array))
def less_equal(x1: Array, x2: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.less_equal <numpy.less_equal>`.
See its docstring for more information.
"""
if x1.dtype not in _real_numeric_dtypes or x2.dtype not in _real_numeric_dtypes:
raise TypeError("Only real numeric dtypes are allowed in less_equal")
# Call result type here just to raise on disallowed type combinations
_result_type(x1.dtype, x2.dtype)
x1, x2 = Array._normalize_two_args(x1, x2)
return Array._new(np.less_equal(x1._array, x2._array))
def log(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.log <numpy.log>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in log")
return Array._new(np.log(x._array))
def log1p(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.log1p <numpy.log1p>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in log1p")
return Array._new(np.log1p(x._array))
def log2(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.log2 <numpy.log2>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in log2")
return Array._new(np.log2(x._array))
def log10(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.log10 <numpy.log10>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in log10")
return Array._new(np.log10(x._array))
def logaddexp(x1: Array, x2: Array) -> Array:
"""
Array API compatible wrapper for :py:func:`np.logaddexp <numpy.logaddexp>`.
See its docstring for more information.
"""
if x1.dtype not in _real_floating_dtypes or x2.dtype not in _real_floating_dtypes:
raise TypeError("Only real floating-point dtypes are allowed in logaddexp")
# Call result type here just to raise on disallowed type combinations
_result_type(x1.dtype, x2.dtype)
x1, x2 = Array._normalize_two_args(x1, x2)
return Array._new(np.logaddexp(x1._array, x2._array))
def logical_and(x1: Array, x2: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.logical_and <numpy.logical_and>`.
See its docstring for more information.
"""
if x1.dtype not in _boolean_dtypes or x2.dtype not in _boolean_dtypes:
raise TypeError("Only boolean dtypes are allowed in logical_and")
# Call result type here just to raise on disallowed type combinations
_result_type(x1.dtype, x2.dtype)
x1, x2 = Array._normalize_two_args(x1, x2)
return Array._new(np.logical_and(x1._array, x2._array))
def logical_not(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.logical_not <numpy.logical_not>`.
See its docstring for more information.
"""
if x.dtype not in _boolean_dtypes:
raise TypeError("Only boolean dtypes are allowed in logical_not")
return Array._new(np.logical_not(x._array))
def logical_or(x1: Array, x2: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.logical_or <numpy.logical_or>`.
See its docstring for more information.
"""
if x1.dtype not in _boolean_dtypes or x2.dtype not in _boolean_dtypes:
raise TypeError("Only boolean dtypes are allowed in logical_or")
# Call result type here just to raise on disallowed type combinations
_result_type(x1.dtype, x2.dtype)
x1, x2 = Array._normalize_two_args(x1, x2)
return Array._new(np.logical_or(x1._array, x2._array))
def logical_xor(x1: Array, x2: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.logical_xor <numpy.logical_xor>`.
See its docstring for more information.
"""
if x1.dtype not in _boolean_dtypes or x2.dtype not in _boolean_dtypes:
raise TypeError("Only boolean dtypes are allowed in logical_xor")
# Call result type here just to raise on disallowed type combinations
_result_type(x1.dtype, x2.dtype)
x1, x2 = Array._normalize_two_args(x1, x2)
return Array._new(np.logical_xor(x1._array, x2._array))
@requires_api_version('2023.12')
def maximum(x1: Array, x2: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.maximum <numpy.maximum>`.
See its docstring for more information.
"""
if x1.dtype not in _real_numeric_dtypes or x2.dtype not in _real_numeric_dtypes:
raise TypeError("Only real numeric dtypes are allowed in maximum")
# Call result type here just to raise on disallowed type combinations
_result_type(x1.dtype, x2.dtype)
x1, x2 = Array._normalize_two_args(x1, x2)
# TODO: maximum(-0., 0.) is unspecified. Should we issue a warning/error
# in that case?
return Array._new(np.maximum(x1._array, x2._array))
@requires_api_version('2023.12')
def minimum(x1: Array, x2: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.minimum <numpy.minimum>`.
See its docstring for more information.
"""
if x1.dtype not in _real_numeric_dtypes or x2.dtype not in _real_numeric_dtypes:
raise TypeError("Only real numeric dtypes are allowed in minimum")
# Call result type here just to raise on disallowed type combinations
_result_type(x1.dtype, x2.dtype)
x1, x2 = Array._normalize_two_args(x1, x2)
return Array._new(np.minimum(x1._array, x2._array))
def multiply(x1: Array, x2: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.multiply <numpy.multiply>`.
See its docstring for more information.
"""
if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
raise TypeError("Only numeric dtypes are allowed in multiply")
# Call result type here just to raise on disallowed type combinations
_result_type(x1.dtype, x2.dtype)
x1, x2 = Array._normalize_two_args(x1, x2)
return Array._new(np.multiply(x1._array, x2._array))
def negative(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.negative <numpy.negative>`.
See its docstring for more information.
"""
if x.dtype not in _numeric_dtypes:
raise TypeError("Only numeric dtypes are allowed in negative")
return Array._new(np.negative(x._array))
def not_equal(x1: Array, x2: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.not_equal <numpy.not_equal>`.
See its docstring for more information.
"""
# Call result type here just to raise on disallowed type combinations
_result_type(x1.dtype, x2.dtype)
x1, x2 = Array._normalize_two_args(x1, x2)
return Array._new(np.not_equal(x1._array, x2._array))
def positive(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.positive <numpy.positive>`.
See its docstring for more information.
"""
if x.dtype not in _numeric_dtypes:
raise TypeError("Only numeric dtypes are allowed in positive")
return Array._new(np.positive(x._array))
# Note: the function name is different here
def pow(x1: Array, x2: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.power <numpy.power>`.
See its docstring for more information.
"""
if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
raise TypeError("Only numeric dtypes are allowed in pow")
# Call result type here just to raise on disallowed type combinations
_result_type(x1.dtype, x2.dtype)
x1, x2 = Array._normalize_two_args(x1, x2)
return Array._new(np.power(x1._array, x2._array))
def real(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.real <numpy.real>`.
See its docstring for more information.
"""
if x.dtype not in _complex_floating_dtypes:
raise TypeError("Only complex floating-point dtypes are allowed in real")
return Array._new(np.real(x._array))
def remainder(x1: Array, x2: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.remainder <numpy.remainder>`.
See its docstring for more information.
"""
if x1.dtype not in _real_numeric_dtypes or x2.dtype not in _real_numeric_dtypes:
raise TypeError("Only real numeric dtypes are allowed in remainder")
# Call result type here just to raise on disallowed type combinations
_result_type(x1.dtype, x2.dtype)
x1, x2 = Array._normalize_two_args(x1, x2)
return Array._new(np.remainder(x1._array, x2._array))
def round(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.round <numpy.round>`.
See its docstring for more information.
"""
if x.dtype not in _numeric_dtypes:
raise TypeError("Only numeric dtypes are allowed in round")
return Array._new(np.round(x._array))
def sign(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.sign <numpy.sign>`.
See its docstring for more information.
"""
if x.dtype not in _numeric_dtypes:
raise TypeError("Only numeric dtypes are allowed in sign")
return Array._new(np.sign(x._array))
@requires_api_version('2023.12')
def signbit(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.signbit <numpy.signbit>`.
See its docstring for more information.
"""
if x.dtype not in _real_floating_dtypes:
raise TypeError("Only real floating-point dtypes are allowed in signbit")
return Array._new(np.signbit(x._array))
def sin(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.sin <numpy.sin>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in sin")
return Array._new(np.sin(x._array))
def sinh(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.sinh <numpy.sinh>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in sinh")
return Array._new(np.sinh(x._array))
def square(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.square <numpy.square>`.
See its docstring for more information.
"""
if x.dtype not in _numeric_dtypes:
raise TypeError("Only numeric dtypes are allowed in square")
return Array._new(np.square(x._array))
def sqrt(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.sqrt <numpy.sqrt>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in sqrt")
return Array._new(np.sqrt(x._array))
def subtract(x1: Array, x2: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.subtract <numpy.subtract>`.
See its docstring for more information.
"""
if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
raise TypeError("Only numeric dtypes are allowed in subtract")
# Call result type here just to raise on disallowed type combinations
_result_type(x1.dtype, x2.dtype)
x1, x2 = Array._normalize_two_args(x1, x2)
return Array._new(np.subtract(x1._array, x2._array))
def tan(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.tan <numpy.tan>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in tan")
return Array._new(np.tan(x._array))
def tanh(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.tanh <numpy.tanh>`.
See its docstring for more information.
"""
if x.dtype not in _floating_dtypes:
raise TypeError("Only floating-point dtypes are allowed in tanh")
return Array._new(np.tanh(x._array))
def trunc(x: Array, /) -> Array:
"""
Array API compatible wrapper for :py:func:`np.trunc <numpy.trunc>`.
See its docstring for more information.
"""
if x.dtype not in _real_numeric_dtypes:
raise TypeError("Only real numeric dtypes are allowed in trunc")
if x.dtype in _integer_dtypes:
# Note: The return dtype of trunc is the same as the input
return x
return Array._new(np.trunc(x._array))