diff --git a/asreview2-optuna/classifiers.py b/asreview2-optuna/classifiers.py index 6a3f16c..d7609bb 100644 --- a/asreview2-optuna/classifiers.py +++ b/asreview2-optuna/classifiers.py @@ -23,9 +23,9 @@ def logistic_params(trial: optuna.trial.FrozenTrial): def svm_params(trial: optuna.trial.FrozenTrial): # Use logarithmic normal distribution for C (C effect is non-linear) - C = trial.suggest_float("svm__C", 0.01, 10, log=True) + C = trial.suggest_float("svm__C", 0.01, 1, log=True) - loss = trial.suggest_categorical("svm__loss", ["hinge", "squared_hinge"]) + loss = "hinge" return {"C": C, "loss": loss} diff --git a/asreview2-optuna/feature_extractors.py b/asreview2-optuna/feature_extractors.py index 5d0c64f..c57a2bb 100644 --- a/asreview2-optuna/feature_extractors.py +++ b/asreview2-optuna/feature_extractors.py @@ -7,15 +7,15 @@ def tfidf_params(trial: optuna.trial.FrozenTrial): #max_features = trial.suggest_int("tfidf__max_features", 200, 20_000) - max_df = trial.suggest_float("tfidf__max_df", 0.5, 1.0) + max_df = trial.suggest_float("tfidf__max_df", 0.65, 1.0) min_df = trial.suggest_int("tfidf__min_df", 1, 10) # trial.suggest_categorical does not support tuples, so choose max_ngram_range first, then create a tuple. - max_ngram_range = trial.suggest_int("tfidf__max_ngram_range", 1, 3) + max_ngram_range = trial.suggest_int("tfidf__max_ngram_range", 2, 3) ngram_range = (1, max_ngram_range) - sublinear_tf = trial.suggest_categorical("tfidf__sublinear_tf", [True, False]) + sublinear_tf = True return { #"max_features": max_features, diff --git a/asreview2-optuna/main.py b/asreview2-optuna/main.py index 5339eef..f27556f 100644 --- a/asreview2-optuna/main.py +++ b/asreview2-optuna/main.py @@ -19,8 +19,8 @@ from feature_extractors import feature_extractor_params, feature_extractors # Study variables -VERSION = 2 -STUDY_SET = "demo" +VERSION = 1 +STUDY_SET = "full" PICKLE_FOLDER_PATH = Path("synergy-dataset", "pickles") CLASSIFIER_TYPE = "svm" # Options: "nb", "log", "svm", "rf" FEATURE_EXTRACTOR_TYPE = "tfidf" # Options: "tfidf", "onehot"