-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathutils.py
196 lines (159 loc) · 6.33 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import itertools
import logging
import torch
import datasets
import diffusers
import transformers
from transformers import CLIPTextModel
from transformers import AutoTokenizer
from torch.utils.data import DataLoader
from accelerate.logging import get_logger
from peft import LoraConfig, get_peft_model
from diffusers.optimization import get_scheduler
from diffusers.utils.import_utils import is_xformers_available
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel
from .data import DreamBoothDataset
def load_models(args):
noise_scheduler = DDPMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000)
text_encoder = CLIPTextModel.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="text_encoder",
revision=args.revision)
if not args.train_text_encoder:
text_encoder.requires_grad_(False)
elif args.train_text_encoder and args.use_lora:
config = LoraConfig(
r=args.lora_text_encoder_r,
lora_alpha=args.lora_text_encoder_alpha,
target_modules=["q_proj", "v_proj"],
lora_dropout=args.lora_text_encoder_dropout,
bias=args.lora_text_encoder_bias)
text_encoder = get_peft_model(text_encoder, config)
text_encoder.print_trainable_parameters()
vae = AutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="vae",
revision=args.revision)
vae.requires_grad_(False)
unet = UNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="unet",
revision=args.revision)
if args.use_lora:
config = LoraConfig(
r=args.lora_r,
lora_alpha=args.lora_alpha,
target_modules= ["to_q", "to_v", "query", "value"],
lora_dropout=args.lora_dropout,
bias=args.lora_bias)
unet = get_peft_model(unet, config)
unet.print_trainable_parameters()
## advanced options
if args.enable_xformers_memory_efficient_attention:
if is_xformers_available():
unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
# below fails when using lora so commenting it out
if args.train_text_encoder and not args.use_lora:
text_encoder.gradient_checkpointing_enable()
return noise_scheduler, text_encoder, vae, unet
def load_optimizer(args, unet, text_encoder, num_processes):
if args.scale_lr:
lr = args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * num_processes
else:
lr = args.learning_rate
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
)
optimizer_class = bnb.optim.AdamW8bit
else:
optimizer_class = torch.optim.AdamW
if args.train_text_encoder:
params_to_optimize = itertools.chain(unet.parameters(), text_encoder.parameters())
else:
params_to_optimize = unet.parameters()
optimizer = optimizer_class(
params_to_optimize,
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon)
return optimizer, lr
def load_logger(args, accelerator):
# Load wandb if needed
if args.report_to == 'wandb':
import wandb
wandb.login(key=args.wandb_key)
wandb.init(project=args.wandb_project_name)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO)
logger = get_logger(__name__)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
return logger
def load_scheduler(args, optimizer):
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps,
num_training_steps=args.max_train_steps,
num_cycles=args.lr_num_cycles,
power=args.lr_power)
return lr_scheduler
def save_lora(accelerator, unet, text_encoder, output_dir, global_step):
ckpt_dir = output_dir / f'checkpoint-{global_step}'
ckpt_dir.mkdir(exist_ok=True)
unwrapped_unet = accelerator.unwrap_model(unet)
unet_dir = ckpt_dir / 'unet'
unwrapped_unet.save_pretrained(unet_dir, state_dict=accelerator.get_state_dict(unet))
if text_encoder:
unwrapped_text_encoder = accelerator.unwrap_model(text_encoder)
textenc_dir = ckpt_dir / 'text_encoder'
textenc_state = accelerator.get_state_dict(text_encoder)
unwrapped_text_encoder.save_pretrained(textenc_dir, state_dict=textenc_state)
def load_dataloader(args, root_dir):
# Load the tokenizer
if args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer_name,
revision=args.revision,
use_fast=False)
elif args.pretrained_model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer",
revision=args.revision,
use_fast=False)
train_dataset = DreamBoothDataset(
data_dir=root_dir,
prompt=args.prompt,
tokenizer=tokenizer,
size=args.resolution)
train_dataloader = DataLoader(
train_dataset,
batch_size=args.train_batch_size,
shuffle=True,
num_workers=1)
return train_dataset, train_dataloader