-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvegetation_02.h
230 lines (174 loc) · 5.9 KB
/
vegetation_02.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
* initial parameters of the vegetation:
* evergreen broadleaf forest
* ------------------------------------------------------------------
c total number of input lines
ntl = 10464 !(km67_calib)
c medium atmospheric pressure
pre = 97585.13 !(km67_calib)
c shortwave radiation reflectivity for leaves
reflu = 0.090
c Value of fraction of photosynthetically active radiation absorbed
c by upper canopy
fapar = 0.87 ! Senna et al. (2005)
c shortwave radiation transmissivity for leaves and stems
c
transmu = 0.16 !transmu*transms = 0.036,
transms = 0.19 !according to Moura et al. (2000)
c use uniform value 1.0 for average diffuse optical depth
avmuir = 1.
c initial values for canopy leaves and stems and soil temperature
tu = 298.16
ts = 298.16
tg = 298.16
td = 298.16
c initial canopy air conditions
t12 = 298.16
q12 = 0.01
c initial value relative humidity of air at z12 (%)
rh12 = 0.30
c physical constants (SI)
stef = 5.67e-8
hvap = 2.5104e+6
cw = 4.18e+3
cp = 1004.64
r = 287.04
pi = 3.141593
grav = 9.80616
densw = 1000.
mdens = 41.4
c data collection height above the surface (m)
za = 65.
c top and bottom heights of upper canopy (m)
z1 = 40.
z2 = 30.
c zero-plane displacement height for upper canopy (m)
da = 30. ! Carswell et al. (submitted)
c roughness length parameter (m)
zoa = 2.35 ! Shuttleworth (1988)
zog = 0.005
c friction velocity
ufrica1 = 0.01
ufric2g = 0.01
u12 = 0.01
c typical dimension of leaves and stems (m)
du = 0.072
ds = 0.100
c leaf width (m)
w = 0.10
c specific leaf area (m2 leaf kg-1 C)
sl = 13. !Medina & Cuevas (1996); Roberts et al. (1996)
c current single-sided stem area index
sai = 1.
c initial values of carbon stored in reservoirs (kg C m-2)
carbu = 0.360
carbs = 18.000
carbf = 0.100
carbr = 0.750
c initial co2 and o2 concentration (mol mol-1)
co2a = 0.000365
o2conc = 0.210000
c intrinsic quantum efficiency for c3 and c4 plant
alpha = 0.060 !c3 - broadleaf trees
c co2/o2 specificity ratio at 15 degrees C
tau15 = 4500.0
c o2/co2 kinetic parameters at 15 degrees C (mol/mol)
kc15 = 1.5e-04
ko15 = 2.5e-01
c initial value intercellular co2 concentration
ciub = 0
c initial value leaf boundary layer co2 concentration
csub = 0
c initial value upper canopy stomatal conductance
gsub = 0
c leaf respiration coefficients
gamaub = 0.0150 !broadleaf trees
c 'm' coefficients for stomatal conductance
coefmub = 7.0 ! broadleaf trees
c 'b' coefficients for stomatal conductance
c (minimum conductance when net photosynthesis is zero)
coefbub = 0.010 !broadleaf trees
c absolute minimum stomatal conductances
gsubmin = 0.00001 !broadleaf trees
c maximum values for ci (to avoid numerical instability)
cimax = 2000.e-06
c nominal values for vmax of top leaf at 15 C (mol co2 m-2 s-1)
vmaxub = 85.e-06 ! broadleaf trees
c initial intercepted liquid h2o on upper canopy leaf and stem area
c (kg h2o m-2)
wu = 0.
ws = 0.
c time constant for leaf and stem liquid drip (day converted to
c seconds)
tdrip = 0.5 * 86400.
c initial values of downward and upward sensible heat flux (W m-2)
fsh = 20.2
fseng = -18.5
c numerical stability parameters
dtairmax = 1.0
dtvegmax = 2.5
dqmax = 0.003
hmin = -50.
gmax = 20.
gmin = -60.
c thickness of soil layers (m)
eg = 0.100
ed = 4.900
c density of soil minerals (kg/m3)
densm = 2650.
c specific heat of soil minerals and organic matter(J kg-1 K-1)
cm = 0.87e+3
co = 1.92e+3
c volume fraction of air, organic matter, field capacity and
c wilting point
epsilonn = 0.477 ! porosity
fio = 0.5
thetafc = 0.36
thetawilt = 0.23
c coefficient for soil moisture stress
stressfac = -5.0
c initial fraction of soil moisture
thetag = 0.36
thetad = 0.36
c exponent of the moisture release equation (adimensional)
b = 9.066
c air entry water potential (mm)
psie = 223.9
c saturation hydraulic conductivity (mm s-1)
ks = 0.0032
kb = 1.e-6
c thermal conductivity of water, air and soil minerals (W m-1 K-1)
kw = 0.596
kair = 0.025
km = 2.50
c weighted factor of water, air and soil minerals
ew = 0.92
eair = 1.75
em = 0.54
c heat capacity of leaves and stems
cu = 2.109e+3
cs = 2.109e+4
c allocation fraction of net primary productivity
au = 0.35 !0.45(inicial)
as = 0.25 !0.40(inicial)
af = 0.35 !0.10(inicial)
ar = 0.05 !0.05(inicial)
c residence time of living carbon (years converted to seconds)
tauu = 1.00*365.*86400.
tauf = 1.00*365.*86400.
taus = 25.00*365.*86400.
taur = 25.00*365.*86400.
c fraction of carbon lost due to growth
n = 0.30
c initial value of mass of litter (kg C m-2)
lu = 0.50 !0.50
ls = 0.25 !0.25
df = 0.45 !0.44
dr = 0.15 !0.135
c respiration rate of soil litter (micromol CO2 kg C-1 s-1 converted
c to kg C kg C-1 s-1)
hu = 0.230 * 12.e-9 * 4.5
hs = 0.230 * 12.e-9 * 4.5
hf = 0.230 * 12.e-9 * 3.7
hr = 0.230 * 12.e-9 * 3.7
c sapwood fraction of the total stem and coarse root biomass
lambdasap = 0.10