-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsyllabus.Rmd
119 lines (113 loc) · 4.77 KB
/
syllabus.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
title: "2017 Syllabus"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
library(kableExtra)
```
```{r generate_dates, include=FALSE}
## first day of class
start_date <- as.Date("2017-01-03")
## all tues
tues <- seq.Date(from = start_date, by = 7, length.out = 10)
## all thur
thur <- tues + 2
## all qtr
qtr <- sort(c(tues, thur))
qtr <- sub("0(\\d)", "\\1", format(qtr, "%d %B"))
```
```{r lecture_topics, include = FALSE}
lec_topics <- list(d1 = c("Course overview",
"Properties of time series",
"Data transformations",
"Time series decomposition"),
d2 = c("Covariance & correlation",
"Autocorrelation & Partial autocorrelation",
"Cross correlation",
"White noise"),
d3 = c("Random walks",
"Autoregressive (AR) models",
"Moving average (MA) models"),
d4 = c("Model estimation",
"Maximum likelihood",
"Bayesian estimation for this course"),
d5 = c("Univariate state-space models",
"Diagnostics for state-space models"),
d6 = c("Introduction to multivariate state-space models"),
d7 = c("Including covariates (predictors) in models",
"Seasonal effects",
"Missing covariates",
"Colinearity"),
d8 = c("Multi-model inference and selection",
"model selection metrics besides AIC",
"Cross-validation",
"Forecast performance metrics"),
d9 = c("Univariate & multivariate dynamic linear models (DLMs)"),
d10 = c("Applications of dynamic linear models (DLMs)"),
d11 = c("Forecasting with exponential smoothing models",
"More forecast assessment"),
d12 = c("Overview of dynamic factor analysis (DFA)"),
d13 = c("Overview of Bayesian estimation"),
d14 = c("Time series models with non-Gaussian errors",
"Non-normal response variables"),
d15 = c("Time series models with spatial autocorrelation"),
d16 = c("Intro to Gompertz models as AR(1) & ARX(1)",
"Estimating species interactions"),
d17 = c("Community dynamics & stability with MAR(1) models"),
d18 = c("Perturbation analysis"),
d19 = c("Student presentations"),
d20 = c("Student presentations")
)
## topics formatted for html
lec_topics_html <- sapply(lapply(lec_topics, paste, "<br>", collapse=""), c)
names(lec_topics_html) <- NULL
```
```{r lab_topics, include = FALSE}
lab_topics <- list(d1 = "",
d2 = c("Matrices & matrix algebra",
"Linear regression in matrix form",
"Basic time series functions",
"Autocorrelation"),
d3 = "",
d4 = c("Simulating & fitting ARMA(p,q) models",
"Bayesian estimation"),
d5 = "",
d6 = c("Fitting state-space models"),
d7 = "",
d8 = c("Model diagnostics",
"Model selection"),
d9 = "",
d10 = c("Fitting DLMs"),
d11 = "",
d12 = c("Fitting DFA models"),
d13 = "",
d14 = c("Fitting models with non-Gaussian errors",
"Fitting zero-inflated models"),
d15 = "",
d16 = c("Fitting MARSS models for species interactions"),
d17 = "",
d18 = c("Fitting hierarchical models"),
d19 = "",
d20 = c("Celebration!")
)
## topics formatted for html
lab_topics_html <- sapply(lapply(lab_topics, paste, "<br>", collapse=""), c)
names(lab_topics_html) <- NULL
```
```{r generate_syllabus, echo=FALSE}
## data frame with dates & topics
syl_txt <- data.frame(
date = qtr,
lec_topics = lec_topics_html,
lab_topics = lab_topics_html
)
colnames(syl_txt) <- c("Date", "Lecture topics", "Lab topics")
## generate table
kable(syl_txt, format = "html", caption = " ", escape = FALSE) %>%
kable_styling(bootstrap_options = "striped",
full_width = F,
position = "left") %>%
column_spec(1, width = "8em") %>%
column_spec(2, width = "27em")
```