-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtorch_learning_onnx.py
119 lines (98 loc) · 4.04 KB
/
torch_learning_onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import time
import multiprocessing
multiprocessing.freeze_support()
time.sleep (1)
import os
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.utils.data import DataLoader,random_split
from sklearn.model_selection import train_test_split
from torchvision.datasets import ImageFolder
import torchvision.transforms as transforms
import pathlib
# Définition des hyperparamètres
batch_size = 16
learning_rate = 0.001
#num_epochs = 10
num_epochs=7
data_path = "dataset"
# Définition des transformations à appliquer aux images
train_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(10),
transforms.ColorJitter(brightness=0.3, contrast=0.3, saturation=0.3, hue=0.1),
transforms.ToTensor(),
transforms.Normalize((1,), (1,))
])
val_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
# Chargement de la dataset
dataset = ImageFolder(data_path)
# Séparation en train_dataset, val_dataset et test_dataset
train_size = int(0.7 * len(dataset))
val_size = int(0.3 * len(dataset))
test_size = len(dataset) - train_size - val_size
train_dataset, val_dataset, test_dataset = random_split(dataset, [train_size, val_size, test_size])
# Application des transformations de data augmentation aux données d'entraînement et de validation
train_dataset.dataset.transform = train_transform
val_dataset.dataset.transform = val_transform
# Obtention des classes de la dataset
classes = dataset.classes
def main():
# Chargement des DataLoader pour l'entraînement, la validation et le test
batch_size = 32
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=4)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=4)
# Création du modèle ResNet18 préentraîné et remplacement de la dernière couche linéaire pour adapter le nombre de classes
model = torch.hub.load('pytorch/vision:v0.10.0',model='resnet18', pretrained=True)
num_features = model.fc.in_features
model.fc = nn.Linear(num_features, len(classes))
# Définition de la fonction de coût et de l'optimiseur
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# Entraînement du modèle
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#device = torch.device('cuda')
model.to(device)
print(device)
print(torch.cuda.device_count())
time.sleep(3)
for epoch in range(num_epochs):
running_loss = 0.0
for i, (images, labels) in enumerate(train_loader):
images, labels = images.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print('Epoch [%d/%d], Loss: %.4f' % (epoch+1, num_epochs, running_loss/len(train_loader)))
# Evaluation du modèle sur les données de validation
model.eval()
with torch.no_grad():
correct = 0
total = 0
for images, labels in val_loader:
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the model on the validation set: %d %%' % (100 * correct / total))
# Export du modèle en format ONNX
model.eval()
example_input = torch.rand(1, 3, 224, 224).to(device)
output_path = 'torchNet_test5.onnx'
torch.onnx.export(model, example_input, output_path)
print('Model saved to %s' % output_path)
if __name__ == '__main__':
main()