-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdqn_no_env_config.py
78 lines (68 loc) · 2.13 KB
/
dqn_no_env_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import itertools
from ray import tune
from collections import OrderedDict
num_seeds = 10
var_env_configs = OrderedDict({})
var_configs = OrderedDict({"env": var_env_configs})
env_config = {
"env": "RLToy-v0",
"horizon": 100,
"env_config": {},
}
algorithm = "DQN"
agent_config = {
"adam_epsilon": 1e-4,
"beta_annealing_fraction": 1.0,
"buffer_size": 1000000,
"double_q": False,
"dueling": False,
"exploration_final_eps": 0.01,
"exploration_fraction": 0.1,
"final_prioritized_replay_beta": 1.0,
"hiddens": None,
"learning_starts": 1000,
"lr": 1e-4, # "lr": grid_search([1e-2, 1e-4, 1e-6]),
"n_step": 1,
"noisy": False,
"num_atoms": 1,
"prioritized_replay": False,
"prioritized_replay_alpha": 0.5,
"sample_batch_size": 4,
"schedule_max_timesteps": 20000,
"target_network_update_freq": 800,
"timesteps_per_iteration": 1000,
"min_iter_time_s": 0,
"train_batch_size": 32,
}
model_config = {
"model": {
"fcnet_hiddens": [256, 256],
"custom_preprocessor": "ohe",
"custom_options": {}, # extra options to pass to your preprocessor
"fcnet_activation": "tanh",
"use_lstm": False,
"max_seq_len": 20,
"lstm_cell_size": 256,
"lstm_use_prev_action_reward": False,
},
}
eval_config = {
"evaluation_interval": 1, # I think this means every x training_iterations
"evaluation_config": {
"explore": False,
"exploration_fraction": 0,
"exploration_final_eps": 0,
"evaluation_num_episodes": 10,
"horizon": 100,
"env_config": {},
},
}
value_tuples = []
for config_type, config_dict in var_configs.items():
for key in config_dict:
assert isinstance(
var_configs[config_type][key], list
), "var_config should be a dict of dicts with lists as the leaf values to allow each configuration option to take multiple possible values"
value_tuples.append(var_configs[config_type][key])
cartesian_product_configs = list(itertools.product(*value_tuples))
print("Total number of configs. to run:", len(cartesian_product_configs))