Skip to content

Latest commit

 

History

History

count-the-hidden-sequences

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 

< Previous                  Next >

You are given a 0-indexed array of n integers differences, which describes the differences between each pair of consecutive integers of a hidden sequence of length (n + 1). More formally, call the hidden sequence hidden, then we have that differences[i] = hidden[i + 1] - hidden[i].

You are further given two integers lower and upper that describe the inclusive range of values [lower, upper] that the hidden sequence can contain.

  • For example, given differences = [1, -3, 4], lower = 1, upper = 6, the hidden sequence is a sequence of length 4 whose elements are in between 1 and 6 (inclusive).
    • [3, 4, 1, 5] and [4, 5, 2, 6] are possible hidden sequences.
    • [5, 6, 3, 7] is not possible since it contains an element greater than 6.
    • [1, 2, 3, 4] is not possible since the differences are not correct.

Return the number of possible hidden sequences there are. If there are no possible sequences, return 0.

 

Example 1:

Input: differences = [1,-3,4], lower = 1, upper = 6
Output: 2
Explanation: The possible hidden sequences are:
- [3, 4, 1, 5]
- [4, 5, 2, 6]
Thus, we return 2.

Example 2:

Input: differences = [3,-4,5,1,-2], lower = -4, upper = 5
Output: 4
Explanation: The possible hidden sequences are:
- [-3, 0, -4, 1, 2, 0]
- [-2, 1, -3, 2, 3, 1]
- [-1, 2, -2, 3, 4, 2]
- [0, 3, -1, 4, 5, 3]
Thus, we return 4.

Example 3:

Input: differences = [4,-7,2], lower = 3, upper = 6
Output: 0
Explanation: There are no possible hidden sequences. Thus, we return 0.

 

Constraints:

  • n == differences.length
  • 1 <= n <= 105
  • -105 <= differences[i] <= 105
  • -105 <= lower <= upper <= 105

Related Topics

[Array] [Prefix Sum]

Hints

Hint 1 Fix the first element of the hidden sequence to any value x and ignore the given bounds. Notice that we can then determine all the other elements of the sequence by using the differences array.
Hint 2 We will also be able to determine the difference between the minimum and maximum elements of the sequence. Notice that the value of x does not affect this.
Hint 3 We now have the ‘range’ of the sequence (difference between min and max element), we can then calculate how many ways there are to fit this range into the given range of lower to upper.
Hint 4 Answer is (upper - lower + 1) - (range of sequence)