Skip to content

Commit ae0e4f3

Browse files
committed
Initial commit
0 parents  commit ae0e4f3

10 files changed

+3021
-0
lines changed

Diff for: README.md

+40
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,40 @@
1+
# Estimating Explainable Alzheimer's Disease Likelihood Map via Clinically-guided Prototype Learning
2+
![XADLiME](image/xadlime.png)
3+
4+
This repository provides the PyTorch implementation of our proposed XProtoADPM framework in addressing Alzheimer's Disease progression modeling.
5+
6+
## Datasets
7+
We utilized Alzheimer's disease neuroimaging initiative dataset
8+
* http://www.loni.usc.edu/ADNI
9+
10+
## Usage
11+
### ADPEN
12+
For pretraining the ADPEN, run:
13+
```
14+
python xadlime_adpen.py --fold=1 --gpu_id=0 --finetune=0
15+
```
16+
For finetuning the ADPEN, make a list the pretrained directory location and run:
17+
```
18+
python xadlime_adpen.py --fold=1 --gpu_id=0 --finetune=1
19+
```
20+
21+
### ProgAE
22+
For training the autoencoder for progression map, run:
23+
```
24+
python xadlime_progae.py --fold=1 --gpu_id=0
25+
```
26+
27+
### XADLiME
28+
After training all required networks, XADLiME can be executed through:
29+
```
30+
python xadlime_classification_clinicalstage.py --fold=1 --gpu_id=0
31+
```
32+
```
33+
python xadlime_regression_mmse.py --fold=1 --gpu_id=0
34+
```
35+
```
36+
python xadlime_regression_age.py --fold=1 --gpu_id=0
37+
```
38+
39+
## Acknowledgements
40+
This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) No. 2022-0-00959 ((Part 2) Few-Shot Learning of Causal Inference in Vision and Language for Decision Making) and No. 2019-0-00079 (Artificial Intelligence Graduate School Program (Korea University)).

0 commit comments

Comments
 (0)