-
Notifications
You must be signed in to change notification settings - Fork 521
/
Copy pathft_fifo_p.v
239 lines (197 loc) · 6.69 KB
/
ft_fifo_p.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
// ============================================================================
// Amazon FPGA Hardware Development Kit
//
// Copyright 2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
//
// Licensed under the Amazon Software License (the "License"). You may not use
// this file except in compliance with the License. A copy of the License is
// located at
//
// http://aws.amazon.com/asl/
//
// or in the "license" file accompanying this file. This file is distributed on
// an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, express or
// implied. See the License for the specific language governing permissions and
// limitations under the License.
// ============================================================================
//------------------------------------------------------------------------------
// Description :
//
// This is a flow-through FIFO that converts a RAM-based FIFO (2 clock
// latency on the RAM) to what looks like a flop based FIFO. There is
// no delay between pop and getting the next data. This sometimes simplifies
// the FIFO pop logic.
//
// Note the _p stands for pipelined RAM, which means there is a 2 clock
// latency on the RAM (registered out data)
//
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
module ft_fifo_p (
clk,
rst_n,
sync_rst_n,
ram_fifo_empty,
ram_fifo_data,
ft_pop,
ram_pop,
ft_valid,
ft_data
);
parameter FIFO_WIDTH = 32;
parameter LESS_RST = 0;
input clk; //Global clock
input rst_n; //Global reset
input sync_rst_n; //Synchronous reset
input ram_fifo_empty; //RAM FIFO is empty
input[FIFO_WIDTH-1:0] ram_fifo_data; //RAM FIFO data
input ft_pop; //POP FT FIFO
output ram_pop; //Pop the RAM FIFO
output ft_valid; //FT FIFO is valid
output[FIFO_WIDTH-1:0] ft_data; //FT FIFO data
////////////////////////////////////////////////////////
//Flow through FIFO to present data to arbiter
reg ram_pop_q = 'h0, ram_pop_qq = 'h0; //Data is valid two clocks after pop
reg[FIFO_WIDTH:0] ft0 = 'h0, ft1 = 'h0, ft2 = 'h0; //Flow through FIFO flops
wire[FIFO_WIDTH:0] nxt_ft0, nxt_ft1, nxt_ft2;
wire ft0_valid = ft0[FIFO_WIDTH];
wire ft1_valid = ft1[FIFO_WIDTH];
wire ft2_valid = ft2[FIFO_WIDTH];
reg[1:0] num_valid = 'h0;
//Qualify ft_pop with ft_valid;
wire qual_ft_pop = ft_pop & ft0_valid;
assign ram_pop = !ram_fifo_empty && sync_rst_n && ((num_valid<3) || qual_ft_pop);
//Keep track of how many valid, will use this to determine if can POP or not
always @(negedge rst_n or posedge clk)
if (!rst_n)
num_valid <= 0;
else if (!sync_rst_n)
num_valid <= 0;
else
begin
case ({ram_pop, qual_ft_pop})
2'b00, 2'b11: num_valid <= num_valid;
2'b01: num_valid <= num_valid - 1;
2'b10: num_valid <= num_valid + 1;
endcase
end
generate
if (LESS_RST == 1)
begin
always @(posedge clk)
begin
ram_pop_q <= ram_pop;
ram_pop_qq <= ram_pop_q;
end
end // if (LESS_RST)
else begin
always @(negedge rst_n or posedge clk)
if (!rst_n)
begin
ram_pop_q <= 0;
ram_pop_qq <= 0;
end
else
begin
ram_pop_q <= ram_pop;
ram_pop_qq <= ram_pop_q;
end
end // else: !if(LESS_RST)
endgenerate
assign nxt_ft0 = (ram_pop_qq && !ft0_valid)? {1'b1, ram_fifo_data}: ft0;
assign nxt_ft1 = (ram_pop_qq && ft0_valid && !ft1_valid )? {1'b1, ram_fifo_data}: ft1;
assign nxt_ft2 = (ram_pop_qq && ft1_valid && !ft2_valid )? {1'b1, ram_fifo_data}: ft2;
generate
if (LESS_RST == 1)
begin
always @(negedge rst_n or posedge clk)
if (!rst_n)
begin
ft0[FIFO_WIDTH] <= 'h0;
ft1[FIFO_WIDTH] <= 'h0;
ft2[FIFO_WIDTH] <= 'h0;
end
else if (!sync_rst_n)
begin
ft0[FIFO_WIDTH] <= 'h0;
ft1[FIFO_WIDTH] <= 'h0;
ft2[FIFO_WIDTH] <= 'h0;
end
else if (qual_ft_pop)
begin
ft0[FIFO_WIDTH] <= nxt_ft1[FIFO_WIDTH];
ft1[FIFO_WIDTH] <= nxt_ft2[FIFO_WIDTH];
ft2[FIFO_WIDTH] <= 'h0;
end
else
begin
ft0[FIFO_WIDTH] <= nxt_ft0[FIFO_WIDTH];
ft1[FIFO_WIDTH] <= nxt_ft1[FIFO_WIDTH];
ft2[FIFO_WIDTH] <= nxt_ft2[FIFO_WIDTH];
end
always @(posedge clk)
if (qual_ft_pop)
begin
ft0[FIFO_WIDTH-1:0] <= nxt_ft1[FIFO_WIDTH-1:0];
ft1[FIFO_WIDTH-1:0] <= nxt_ft2[FIFO_WIDTH-1:0];
ft2[FIFO_WIDTH-1:0] <= ft2[FIFO_WIDTH-1:0];
end
else
begin
ft0[FIFO_WIDTH-1:0] <= nxt_ft0[FIFO_WIDTH-1:0];
ft1[FIFO_WIDTH-1:0] <= nxt_ft1[FIFO_WIDTH-1:0];
ft2[FIFO_WIDTH-1:0] <= nxt_ft2[FIFO_WIDTH-1:0];
end
end // if (LESS_RST)
else begin
always @(negedge rst_n or posedge clk)
if (!rst_n)
begin
ft0 <= 0;
ft1 <= 0;
ft2 <= 0;
end
else if (!sync_rst_n)
begin
ft0 <= 0;
ft1 <= 0;
ft2 <= 0;
end
else if (qual_ft_pop)
begin
ft0 <= nxt_ft1;
ft1 <= nxt_ft2;
ft2 <= 0;
end
else
begin
ft0 <= nxt_ft0;
ft1 <= nxt_ft1;
ft2 <= nxt_ft2;
end
end // else: !if(LESS_RST)
endgenerate
assign {ft_valid, ft_data} = ft0;
/////////////////////////
//Simulation checks
/////////////////////////
//synopsys translate_off
`ifdef DESIGN_ERROR
`include "design_error.inc"
reg[1:0] num_valid_q;
always @(posedge clk)
begin
if (!ft0_valid && ft_pop) begin
design_error("FIFO underflow (pop when not valid)");
end
if ((num_valid==0) && (num_valid_q==3) && sync_rst_n) begin
design_error("NumValid overflow");
end
if ((num_valid==3) && (num_valid_q==0)) begin
design_error("NumValid underflow");
end
num_valid_q <= num_valid;
end
`endif
//synopsys translate_on
endmodule