-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathtest_optimize_utils.py
410 lines (359 loc) · 13.1 KB
/
test_optimize_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
from __future__ import absolute_import
import unittest
from unittest.mock import Mock, patch
import pytest
from sagemaker.enums import Tag
from sagemaker.serve.utils.optimize_utils import (
_generate_optimized_model,
_update_environment_variables,
_is_image_compatible_with_optimization_job,
_extract_speculative_draft_model_provider,
_extracts_and_validates_speculative_model_source,
_is_s3_uri,
_generate_additional_model_data_sources,
_generate_channel_name,
_extract_optimization_config_and_env,
_is_optimized,
_custom_speculative_decoding,
_is_inferentia_or_trainium,
)
mock_optimization_job_output = {
"OptimizationJobArn": "arn:aws:sagemaker:us-west-2:312206380606:optimization-job/"
"modelbuilderjob-3cbf9c40b63c455d85b60033f9a01691",
"OptimizationJobStatus": "COMPLETED",
"OptimizationJobName": "modelbuilderjob-3cbf9c40b63c455d85b60033f9a01691",
"ModelSource": {
"S3": {
"S3Uri": "s3://jumpstart-private-cache-alpha-us-west-2/meta-textgeneration/"
"meta-textgeneration-llama-3-8b/artifacts/inference-prepack/v1.0.1/"
}
},
"OptimizationEnvironment": {
"ENDPOINT_SERVER_TIMEOUT": "3600",
"HF_MODEL_ID": "/opt/ml/model",
"MODEL_CACHE_ROOT": "/opt/ml/model",
"SAGEMAKER_ENV": "1",
"SAGEMAKER_MODEL_SERVER_WORKERS": "1",
"SAGEMAKER_PROGRAM": "inference.py",
},
"DeploymentInstanceType": "ml.g5.2xlarge",
"OptimizationConfigs": [
{
"ModelQuantizationConfig": {
"Image": "763104351884.dkr.ecr.us-west-2.amazonaws.com/djl-inference:0.28.0-lmi10.0.0-cu124",
"OverrideEnvironment": {"OPTION_QUANTIZE": "awq"},
}
}
],
"OutputConfig": {"S3OutputLocation": "s3://quicksilver-model-data/llama-3-8b/quantized-1/"},
"OptimizationOutput": {
"RecommendedInferenceImage": "763104351884.dkr.ecr.us-west-2.amazonaws.com/djl-inference:0.28.0-lmi10.0.0-cu124"
},
"RoleArn": "arn:aws:iam::312206380606:role/service-role/AmazonSageMaker-ExecutionRole-20240116T151132",
"StoppingCondition": {"MaxRuntimeInSeconds": 36000},
"ResponseMetadata": {
"RequestId": "a95253d5-c045-4708-8aac-9f0d327515f7",
"HTTPStatusCode": 200,
"HTTPHeaders": {
"x-amzn-requestid": "a95253d5-c045-4708-8aac-9f0d327515f7",
"content-type": "application/x-amz-json-1.1",
"content-length": "1371",
"date": "Fri, 21 Jun 2024 04:27:42 GMT",
},
"RetryAttempts": 0,
},
}
@pytest.mark.parametrize(
"instance, expected",
[
("ml.trn1.2xlarge", True),
("ml.inf2.xlarge", True),
("ml.c7gd.4xlarge", False),
],
)
def test_is_inferentia_or_trainium(instance, expected):
assert _is_inferentia_or_trainium(instance) == expected
@pytest.mark.parametrize(
"image_uri, expected",
[
(
"763104351884.dkr.ecr.us-west-2.amazonaws.com/djl-inference:0.28.0-lmi10.0.0-cu124",
True,
),
(
"763104351884.dkr.ecr.us-west-2.amazonaws.com/djl-inference:0.28.0-neuronx-sdk2.18.2",
True,
),
(
None,
True,
),
(
"763104351884.dkr.ecr.us-west-2.amazonaws.com/huggingface-pytorch-tgi-inference:"
"2.1.1-tgi2.0.0-gpu-py310-cu121-ubuntu22.04",
False,
),
(None, True),
],
)
def test_is_image_compatible_with_optimization_job(image_uri, expected):
assert _is_image_compatible_with_optimization_job(image_uri) == expected
def test_generate_optimized_model():
pysdk_model = Mock()
pysdk_model.model_data = {
"S3DataSource": {
"S3Uri": "s3://jumpstart-private-cache-alpha-us-west-2/meta-textgeneration/"
"meta-textgeneration-llama-3-8b/artifacts/inference-prepack/v1.0.1/"
}
}
optimized_model = _generate_optimized_model(pysdk_model, mock_optimization_job_output)
assert (
optimized_model.image_uri
== mock_optimization_job_output["OptimizationOutput"]["RecommendedInferenceImage"]
)
assert (
optimized_model.model_data["S3DataSource"]["S3Uri"]
== mock_optimization_job_output["OutputConfig"]["S3OutputLocation"]
)
assert optimized_model.instance_type == mock_optimization_job_output["DeploymentInstanceType"]
pysdk_model.add_tags.assert_called_once_with(
{
"Key": Tag.OPTIMIZATION_JOB_NAME,
"Value": mock_optimization_job_output["OptimizationJobName"],
}
)
def test_is_optimized():
model = Mock()
model._tags = {"Key": Tag.OPTIMIZATION_JOB_NAME}
assert _is_optimized(model) is True
model._tags = [{"Key": Tag.SPECULATIVE_DRAFT_MODEL_PROVIDER}]
assert _is_optimized(model) is True
model._tags = [{"Key": Tag.FINE_TUNING_MODEL_PATH}]
assert _is_optimized(model) is False
@pytest.mark.parametrize(
"env, new_env, output_env",
[
({"a": "1"}, {"b": "2"}, {"a": "1", "b": "2"}),
(None, {"b": "2"}, {"b": "2"}),
({"a": "1"}, None, {"a": "1"}),
(None, None, None),
],
)
def test_update_environment_variables(env, new_env, output_env):
assert _update_environment_variables(env, new_env) == output_env
@pytest.mark.parametrize(
"speculative_decoding_config, expected_model_provider",
[
({"ModelProvider": "SageMaker"}, "sagemaker"),
({"ModelProvider": "Custom"}, "custom"),
({"ModelSource": "s3://"}, "custom"),
(None, None),
],
)
def test_extract_speculative_draft_model_provider(
speculative_decoding_config, expected_model_provider
):
assert (
_extract_speculative_draft_model_provider(speculative_decoding_config)
== expected_model_provider
)
def test_extract_speculative_draft_model_s3_uri():
res = _extracts_and_validates_speculative_model_source({"ModelSource": "s3://"})
assert res == "s3://"
def test_extract_speculative_draft_model_s3_uri_ex():
with pytest.raises(ValueError):
_extracts_and_validates_speculative_model_source({"ModelSource": None})
def test_generate_channel_name():
assert _generate_channel_name(None) is not None
additional_model_data_sources = _generate_additional_model_data_sources(
"s3://jumpstart-private-cache-alpha-us-west-2/meta-textgeneration/", "channel_name", True
)
assert _generate_channel_name(additional_model_data_sources) == "channel_name"
def test_generate_additional_model_data_sources():
model_source = _generate_additional_model_data_sources(
"s3://jumpstart-private-cache-alpha-us-west-2/meta-textgeneration/", "channel_name", True
)
assert model_source == [
{
"ChannelName": "channel_name",
"S3DataSource": {
"S3Uri": "s3://jumpstart-private-cache-alpha-us-west-2/meta-textgeneration/",
"S3DataType": "S3Prefix",
"CompressionType": "None",
"ModelAccessConfig": {"ACCEPT_EULA": True},
},
}
]
model_source = _generate_additional_model_data_sources(
"s3://jumpstart-private-cache-alpha-us-west-2/meta-textgeneration/", "channel_name", False
)
assert model_source == [
{
"ChannelName": "channel_name",
"S3DataSource": {
"S3Uri": "s3://jumpstart-private-cache-alpha-us-west-2/meta-textgeneration/",
"S3DataType": "S3Prefix",
"CompressionType": "None",
},
}
]
@pytest.mark.parametrize(
"s3_uri, expected",
[
(
"s3://jumpstart-private-cache-alpha-us-west-2/meta-textgeneration/"
"meta-textgeneration-llama-3-8b/artifacts/inference-prepack/v1.0.1/",
True,
),
("invalid://", False),
],
)
def test_is_s3_uri(s3_uri, expected):
assert _is_s3_uri(s3_uri) == expected
@pytest.mark.parametrize(
"quantization_config, compilation_config, sharding_config, expected_config, expected_env",
[
(
None,
{
"OverrideEnvironment": {
"OPTION_TENSOR_PARALLEL_DEGREE": "2",
}
},
None,
{
"ModelCompilationConfig": {
"OverrideEnvironment": {
"OPTION_TENSOR_PARALLEL_DEGREE": "2",
}
},
},
{
"OPTION_TENSOR_PARALLEL_DEGREE": "2",
},
),
(
{
"OverrideEnvironment": {
"OPTION_TENSOR_PARALLEL_DEGREE": "2",
}
},
None,
None,
{
"ModelQuantizationConfig": {
"OverrideEnvironment": {
"OPTION_TENSOR_PARALLEL_DEGREE": "2",
}
},
},
{
"OPTION_TENSOR_PARALLEL_DEGREE": "2",
},
),
(
None,
None,
{
"OverrideEnvironment": {
"OPTION_TENSOR_PARALLEL_DEGREE": "2",
}
},
{
"ModelShardingConfig": {
"OverrideEnvironment": {
"OPTION_TENSOR_PARALLEL_DEGREE": "2",
}
},
},
{
"OPTION_TENSOR_PARALLEL_DEGREE": "2",
},
),
(None, None, None, None, None),
],
)
def test_extract_optimization_config_and_env(
quantization_config, compilation_config, expected_config, expected_env
):
assert _extract_optimization_config_and_env(quantization_config, compilation_config) == (
expected_config,
expected_env,
)
class TestCustomSpeculativeDecodingConfig(unittest.TestCase):
@patch("sagemaker.model.Model")
def test_with_s3_hf(self, mock_model):
mock_model.env = {}
mock_model.additional_model_data_sources = None
speculative_decoding_config = {
"ModelSource": "s3://bucket/djl-inference-2024-07-02-00-03-32-127/code"
}
res_model = _custom_speculative_decoding(mock_model, speculative_decoding_config)
mock_model.add_tags.assert_called_once_with(
{"Key": Tag.SPECULATIVE_DRAFT_MODEL_PROVIDER, "Value": "custom"}
)
self.assertEqual(
res_model.env,
{"OPTION_SPECULATIVE_DRAFT_MODEL": "/opt/ml/additional-model-data-sources/draft_model"},
)
self.assertEqual(
res_model.additional_model_data_sources,
[
{
"ChannelName": "draft_model",
"S3DataSource": {
"S3Uri": "s3://bucket/djl-inference-2024-07-02-00-03-32-127/code",
"S3DataType": "S3Prefix",
"CompressionType": "None",
},
}
],
)
@patch("sagemaker.model.Model")
def test_with_s3_js(self, mock_model):
mock_model.env = {}
mock_model.additional_model_data_sources = None
speculative_decoding_config = {
"ModelSource": "s3://bucket/huggingface-pytorch-tgi-inference"
}
res_model = _custom_speculative_decoding(mock_model, speculative_decoding_config, True)
self.assertEqual(
res_model.additional_model_data_sources,
[
{
"ChannelName": "draft_model",
"S3DataSource": {
"S3Uri": "s3://bucket/huggingface-pytorch-tgi-inference",
"S3DataType": "S3Prefix",
"CompressionType": "None",
"ModelAccessConfig": {"ACCEPT_EULA": True},
},
}
],
)
@patch("sagemaker.model.Model")
def test_with_non_s3(self, mock_model):
mock_model.env = {}
mock_model.additional_model_data_sources = None
speculative_decoding_config = {"ModelSource": "huggingface-pytorch-tgi-inference"}
res_model = _custom_speculative_decoding(mock_model, speculative_decoding_config, False)
self.assertIsNone(res_model.additional_model_data_sources)
self.assertEqual(
res_model.env,
{"OPTION_SPECULATIVE_DRAFT_MODEL": "huggingface-pytorch-tgi-inference"},
)
mock_model.add_tags.assert_called_once_with(
{"Key": Tag.SPECULATIVE_DRAFT_MODEL_PROVIDER, "Value": "custom"}
)